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Mobile home HVAC systems are vital for maintaining a comfortable and healthy living
environment. However, when these systems are compromised by poor air quality, the long-
term effects can be significant. Understanding how mobile home HVAC systems work and

their vulnerabilities to air quality issues is essential for homeowners who wish to ensure their
well-being.

Mobile homes often come equipped with compact HVAC systems designed to fit their limited
space. These systems typically include heating, ventilation, and air conditioning components

that work together to regulate indoor climate. Outdoor compressor units must be securely
mounted to prevent damage mobile home hvac ductwork knowledge. Given the size

constraints, mobile home HVAC units can be more susceptible to inefficiencies and
malfunctions compared to those in traditional homes.

One of the primary concerns with mobile home HVAC systems is their exposure to outdoor
pollutants and allergens. Mobile homes may not have as robust insulation or sealing as
permanent structures, which makes it easier for external contaminants to infiltrate the

interior environment. This infiltration can lead to a plethora of issues ranging from minor
discomforts such as allergies to more severe health problems like respiratory illnesses.

The long-term effects of poor air quality on residents of mobile homes can be profound.
Prolonged exposure to pollutants such as dust, mold spores, pollen, and volatile organic

compounds (VOCs) can exacerbate existing health conditions or contribute to the
development of new ones. For instance, individuals with asthma may experience increased

frequency of attacks due to higher levels of airborne irritants.

Furthermore, children and elderly individuals residing in mobile homes are particularly
vulnerable. Children's developing respiratory systems are susceptible to damage from

inhaling polluted air over extended periods. Similarly, older adults may find that poor air
quality aggravates pre-existing health issues like cardiovascular diseases or chronic

obstructive pulmonary disease (COPD).

To mitigate these risks, regular maintenance of mobile home HVAC systems is crucial. This
includes changing filters frequently, ensuring proper ventilation throughout the home, and
conducting routine inspections for signs of wear or damage in the system's components.

Homeowners might also consider investing in air purifiers or dehumidifiers as supplementary
measures to improve indoor air quality.
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In conclusion, while mobile home HVAC systems play a crucial role in maintaining comfort
within these unique living spaces, they also face particular challenges related to air quality

management. By understanding these challenges and taking proactive steps towards
addressing them, residents can protect themselves from the long-term health effects

associated with poor indoor air quality in mobile homes.

The rise in poor air quality is a growing concern across the globe, and its implications extend
beyond human health. One area that is often overlooked in this discourse is the impact of air
quality on Heating, Ventilation, and Air Conditioning (HVAC) systems. These systems are
pivotal in maintaining indoor comfort and air quality, yet they are increasingly challenged by
deteriorating outdoor air conditions. Understanding the long-term effects of poor air quality on
HVAC performance is essential for both system efficiency and indoor environmental health.

At its core, an HVAC system is designed to filter, heat, cool, and circulate air within a building.
However, when outdoor air quality declines due to pollutants such as particulate matter
(PM2.5), volatile organic compounds (VOCs), and other airborne contaminants, these systems
must work harder to maintain indoor standards. The increased load on filters can lead to more
frequent maintenance requirements and reduced lifespan of the equipment. For instance,
clogged filters restrict airflow, forcing fans and blowers to operate under strain which can lead
to mechanical failures over time.

Moreover, poor air quality can exacerbate wear and tear on HVAC components such as coils
and ductwork. Pollutants can settle on these surfaces leading to corrosion or microbial growth
like mold both of which compromise system efficiency and potentially introduce health risks
into the circulated air. This not only leads to higher energy consumption but also increases
operational costs due to necessary repairs or replacements.

The longevity of HVAC systems is significantly affected by continuous exposure to subpar air
conditions. Systems may need premature replacement if they consistently operate under
adverse conditions without adequate filtration or maintenance interventions. This reality
underscores a critical economic implication: as businesses face greater expenses related to
frequent repairs or new installations, this could translate into higher costs for consumers who
rely on these services.

Furthermore, there's an indirect effect on public health when HVAC systems underperform due
to poor external air quality; inadequate filtration means more pollutants enter living spaces
unfiltered thereby posing respiratory risks especially for vulnerable populations such as
children or those with pre-existing conditions.



To mitigate these impacts in the long term, it's imperative for stakeholders including building
managers and policymakers to invest in high-efficiency filtration technologies capable of
handling elevated levels of outdoor pollutants. Regular maintenance schedules should be
strictly adhered to ensure optimal performance even under challenging conditions.
Additionally, increasing awareness about the importance of ventilation management amidst
fluctuating outdoor pollution levels is crucial.

In conclusion, while much attention has been rightly focused on how poor air quality affects
human health directly, it is equally important to consider its repercussions on essential
infrastructure like HVAC systems that play a key role in our daily lives indoors. Addressing this
issue requires proactive measures aimed at enhancing system resilience against
environmental challenges while ensuring sustainable indoor environments for future
generations.
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Types of Measurements
Required in Mobile Home
HVAC Checks

The relationship between air quality and health has long been a subject of scientific inquiry,
with particular attention to vulnerable populations living in suboptimal conditions. Mobile
homes, often associated with lower socioeconomic status, present unique challenges when it
comes to ensuring good air quality. These dwellings are typically smaller, more densely
packed, and may lack the advanced ventilation systems found in traditional housing. As such,
residents of mobile homes are at a heightened risk of exposure to pollutants that can have
serious long-term health effects.

Poor air quality within mobile homes is frequently the result of both external and internal
factors. External factors include proximity to highways or industrial areas that emit pollutants
like nitrogen dioxide and particulate matter. Internal factors might involve the use of certain
household products that release volatile organic compounds (VOCs), smoking indoors, or
inadequate ventilation systems that fail to remove contaminants effectively.

The long-term health effects associated with poor air quality in mobile homes are manifold and
concerning. Respiratory issues are among the most immediate consequences; prolonged
exposure to airborne pollutants such as dust mites, mold spores, and tobacco smoke can
exacerbate conditions like asthma and bronchitis. Children living in these environments are
particularly susceptible; their developing respiratory systems make them more vulnerable to
the adverse effects of pollution.

Beyond respiratory problems, there is growing evidence linking poor indoor air quality to
cardiovascular diseases. Fine particulate matter can enter the bloodstream through inhalation,
leading to inflammation that affects heart health over time. Inhabitants of mobile homes
exposed chronically to these particles may face increased risks for hypertension, heart
attacks, and stroke.



Moreover, recent studies suggest a connection between suboptimal air quality and
neurological disorders. Exposure to pollutants like lead or certain VOCs has been associated
with cognitive decline in adults and developmental delays in children. This presents a
significant public health concern as it impacts educational outcomes and quality of life for
individuals from early childhood into old age.

Addressing these issues requires a multi-faceted approach aimed at improving air quality both
inside and around mobile home communities. Policy interventions could include regulations
limiting emissions from nearby industrial sources or providing subsidies for installing better
ventilation systems within these homes. Community education programs can also play a
crucial role by informing residents about steps they can take-such as using non-toxic cleaning
products or ensuring regular maintenance of HVAC systems-to minimize indoor pollution
levels.

In conclusion, while mobile homes offer an affordable housing option for many individuals and
families, they should not come at the cost of long-term health risks due to poor air quality.
Understanding the specific challenges faced by this population is essential for crafting effective
policies that protect their well-being now and into the future. The goal must be not only
affordable housing but also safe housing where clean air is accessible to all residents
regardless of their economic standing.





Comparing Digital vs Analog
Multimeters for HVAC Use

The Environmental and Economic Consequences of Inefficient HVAC Systems: Assessing
Long Term Effects of Poor Air Quality



In the modern world, where urbanization and industrial activities continue to expand at an
unprecedented rate, the quality of air we breathe has become a pressing concern. Central to
this issue is the often-overlooked role that inefficient Heating, Ventilation, and Air Conditioning
(HVAC) systems play in exacerbating poor air quality. As we delve into assessing the long-
term effects of suboptimal air conditions, it becomes evident that both environmental and
economic consequences are significant.

Inefficient HVAC systems contribute substantially to environmental degradation. These
systems, when not properly maintained or outdated, consume excessive energy resources.
This overconsumption leads directly to increased greenhouse gas emissions as most energy
production still relies heavily on fossil fuels. As a result, inefficient HVAC systems indirectly
accelerate climate change by contributing to higher atmospheric carbon levels. Moreover,
such systems frequently fail to filter pollutants effectively from indoor environments. This
inefficiency allows particulate matter and volatile organic compounds (VOCs) to accumulate
indoors, posing serious health risks to occupants and contributing further to overall poor air
quality.

Economically, the repercussions of inefficient HVAC systems are equally concerning. The
immediate financial strain is evident in inflated energy bills due to excessive consumption
required by malfunctioning or outdated units. Businesses and homeowners alike face
heightened operational costs without realizing that investing in efficient technology could
mitigate these expenses significantly over time. Furthermore, poor indoor air quality can lead
to decreased productivity among employees due to health issues such as respiratory problems
or allergies triggered by unfiltered pollutants. This decline in workforce efficiency translates
into reduced economic output for businesses.

Long-term exposure to poor air quality also results in broader societal economic impacts
through increased healthcare costs. Chronic illnesses linked directly or indirectly with polluted
indoor environments place additional burdens on medical facilities and insurance providers.
Consequently, governments may need to allocate more financial resources towards public
health interventions aimed at managing diseases associated with poor air quality.

Addressing these challenges requires a multifaceted approach involving technological
upgrades, regular maintenance practices for existing HVAC installations, and policy
interventions promoting sustainable building codes and standards for new constructions. By
prioritizing energy-efficient HVAC solutions, both environmental impact and economic burdens
can be alleviated significantly.



In conclusion, while inefficient HVAC systems may seem like a minor component within the
larger framework of global environmental concerns, their contribution to deteriorating air
quality cannot be understated. Understanding the intricate link between these systems'
performance and long-term environmental as well as economic consequences opens avenues
for strategic improvements that promise healthier living conditions alongside financial savings-
a dual benefit crucial for sustainable development moving forward.

Safety Considerations When
Using Multimeters in Mobile
Homes

Title: Strategies for Improving Air Quality in Mobile Homes: Assessing Long-Term Effects of
Poor Air Quality

Living in mobile homes often presents unique challenges when it comes to maintaining good
air quality. These structures, typically compact and sometimes older, can easily accumulate
pollutants that degrade the indoor environment. Assessing the long-term effects of poor air
quality in mobile homes requires a comprehensive understanding of both health implications
and practical strategies to mitigate these issues.

Poor indoor air quality is linked to various health problems including respiratory disorders,
allergies, and even cardiovascular conditions. Over time, exposure to pollutants such as mold
spores, volatile organic compounds (VOCs), dust mites, and smoke can exacerbate these
health issues. In mobile homes, which may have less efficient ventilation systems compared to
traditional houses, these pollutants can linger longer and at higher concentrations.

Understanding the long-term effects involves recognizing how persistent exposure impacts
vulnerable populations such as children and the elderly more severely. Children's developing
lungs are particularly susceptible to damage from airborne contaminants. For older adults or



those with pre-existing health conditions, prolonged exposure can lead to worsened symptoms
or trigger new health problems.

To combat these potential hazards, implementing effective strategies for improving air quality
is crucial. One primary strategy is enhancing ventilation within the home. This might include
installing exhaust fans in kitchens and bathrooms or using portable air purifiers equipped with
HEPA filters that capture fine particles from the air.

Regular maintenance also plays a significant role in maintaining good air quality. For instance,
checking HVAC systems frequently ensures they are functioning correctly without circulating
dust or other allergens. Additionally, keeping humidity levels in check by employing
dehumidifiers can prevent mold growth-a common problem in humid environments often
encountered by mobile homeowners.

Moreover, choosing low-emission building materials and household products can significantly
reduce VOCs inside a mobile home. Opting for natural cleaning products instead of chemical-
laden alternatives minimizes toxic emissions while still keeping spaces clean.

Education is another key component-informing residents about sources of indoor pollution
empowers them to make conscious choices about their living environment. Awareness
campaigns or workshops focusing on air quality maintenance could be beneficial community
initiatives.

Finally, advocating for policy changes that promote better construction standards for mobile
homes addresses root causes at an industry level. Ensuring newer models incorporate
advanced ventilation systems and eco-friendly materials would foster healthier living
conditions from the outset.

In conclusion, assessing and addressing the long-term effects of poor air quality in mobile
homes necessitates a multi-faceted approach involving individual action and broader systemic
changes. By adopting simple yet effective strategies like improved ventilation practices,
regular maintenance checks, careful selection of building materials, educational initiatives on
pollutant sources-and advocating for enhanced industry standards-we can protect vulnerable
populations from adverse health outcomes associated with prolonged exposure to indoor
pollutants while promoting overall well-being within these unique residential settings.



Recommended Brands and
Models for HVAC Multimeters



In recent years, the importance of air quality has become increasingly apparent as we grapple
with the long-term effects of pollution and poor ventilation. Advances in HVAC (Heating,
Ventilation, and Air Conditioning) technology are at the forefront of addressing these concerns,
offering innovative solutions for better air filtration and ventilation. These developments are
crucial in mitigating the adverse health effects associated with poor air quality, which range
from respiratory issues to cardiovascular diseases.

Historically, HVAC systems have played a vital role in maintaining indoor comfort by
controlling temperature and humidity levels. However, as our understanding of indoor air
pollution deepens, there is a growing recognition that these systems must also efficiently filter
out harmful pollutants. Modern HVAC technologies incorporate high-efficiency particulate air
(HEPA) filters and activated carbon filters designed to capture fine particulates and volatile
organic compounds (VOCs). These advancements ensure that even microscopic pollutants
such as pollen, mold spores, and smoke particles are effectively removed from indoor
environments.

Moreover, technological innovations extend beyond mere filtration. Advanced ventilation
systems now include smart sensors that continuously monitor air quality in real-time. These
systems can automatically adjust airflow rates based on detected pollutant levels or
occupancy patterns to optimize indoor conditions without wasting energy. Such adaptability
not only enhances comfort but also ensures that occupants breathe cleaner air consistently.

The implications of improved HVAC technology on public health cannot be overstated.
Prolonged exposure to poor air quality has been linked to numerous health problems including
asthma exacerbation, reduced lung function, and even premature death due to heart disease
or stroke. By improving indoor air quality through advanced HVAC systems, we can
significantly reduce these risks.

Furthermore, these technologies carry additional benefits beyond health improvements.
Enhanced HVAC systems contribute to energy efficiency by optimizing airflow based on real-
time data rather than fixed schedules. This leads to lower energy consumption and reduced
operational costs for both residential and commercial buildings.

In conclusion, the advances in HVAC technology for better air filtration and ventilation mark a
significant step forward in combating the long-term effects of poor air quality. As these
technologies continue to evolve, they hold great promise not only for improving public health
but also for fostering sustainable practices within our built environments. Investing in such
innovations is essential if we are to create healthier living spaces capable of supporting human
well-being amidst growing environmental challenges.



About Heat pump

 

This article is about devices used to heat and potentially also cool a building (or water)
using the refrigeration cycle. For more about the theory, see Heat pump and
refrigeration cycle. For details of the most common type, see air source heat pump. For
a similar device for cooling only, see air conditioner. For heat pumps used to keep food
cool, see refrigerator. For other uses, see Heat pump (disambiguation).
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External heat exchanger of an air-source heat pump for both heating and
cooling
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Mitsubishi heat pump interior air handler wall unit
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A car drives past 4 wind turbines in a field, with more on the horizon
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A heat pump is a device that consumes energy (usually electricity) to transfer heat from
a cold heat sink to a hot heat sink. Specifically, the heat pump transfers thermal energy
using a refrigeration cycle, cooling the cool space and warming the warm space.[1] In
cold weather, a heat pump can move heat from the cool outdoors to warm a house (e.g.
winter); the pump may also be designed to move heat from the house to the warmer
outdoors in warm weather (e.g. summer). As they transfer heat rather than generating
heat, they are more energy-efficient than other ways of heating or cooling a home.[2]



A gaseous refrigerant is compressed so its pressure and temperature rise. When
operating as a heater in cold weather, the warmed gas flows to a heat exchanger in the
indoor space where some of its thermal energy is transferred to that indoor space,
causing the gas to condense to its liquid state. The liquified refrigerant flows to a heat
exchanger in the outdoor space where the pressure falls, the liquid evaporates and the
temperature of the gas falls. It is now colder than the temperature of the outdoor space
being used as a heat source. It can again take up energy from the heat source, be
compressed and repeat the cycle.

Air source heat pumps are the most common models, while other types include ground
source heat pumps, water source heat pumps and exhaust air heat pumps.[3] Large-
scale heat pumps are also used in district heating systems.[4]

The efficiency of a heat pump is expressed as a coefficient of performance (COP), or
seasonal coefficient of performance (SCOP). The higher the number, the more efficient
a heat pump is. For example, an air-to-water heat pump that produces 6kW at a SCOP
of 4.62 will give over 4kW of energy into a heating system for every kilowatt of energy
that the heat pump uses itself to operate. When used for space heating, heat pumps are
typically more energy-efficient than electric resistance and other heaters.

Because of their high efficiency and the increasing share of fossil-free sources in
electrical grids, heat pumps are playing a role in climate change mitigation.[5][6]
Consuming 1 kWh of electricity, they can transfer 1[7] to 4.5 kWh of thermal energy into
a building. The carbon footprint of heat pumps depends on how electricity is generated,
but they usually reduce emissions.[8] Heat pumps could satisfy over 80% of global
space and water heating needs with a lower carbon footprint than gas-fired condensing
boilers: however, in 2021 they only met 10%.[4]

Principle of operation

[edit]
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A: indoor compartment, B: outdoor compartment, I: insulation, 1: condenser,
2: expansion valve, 3: evaporator, 4: compressor

Main articles: Heat pump and refrigeration cycle and Vapor-compression refrigeration



Heat flows spontaneously from a region of higher temperature to a region of lower
temperature. Heat does not flow spontaneously from lower temperature to higher, but it
can be made to flow in this direction if work is performed. The work required to transfer a
given amount of heat is usually much less than the amount of heat; this is the motivation
for using heat pumps in applications such as the heating of water and the interior of
buildings.[9]

The amount of work required to drive an amount of heat Q from a lower-temperature
reservoir such as ambient air to a higher-temperature reservoir such as the interior of a

building is: 

\displaystyle W=\frac Q\mathrm COP 

Image not found or type unknown where

\displaystyle WImage not found or type unknown is the work performed on the working fluid by the heat pump's compressor.
\displaystyle QImage not found or type unknown is the heat transferred from the lower-temperature reservoir to the higher-
temperature reservoir.
\displaystyle \mathrm COP Image not found or type unknown is the instantaneous coefficient of performance for the heat pump at the
temperatures prevailing in the reservoirs at one instant.

The coefficient of performance of a heat pump is greater than one so the work required
is less than the heat transferred, making a heat pump a more efficient form of heating
than electrical resistance heating. As the temperature of the higher-temperature
reservoir increases in response to the heat flowing into it, the coefficient of performance
decreases, causing an increasing amount of work to be required for each unit of heat
being transferred.[9]

The coefficient of performance, and the work required by a heat pump can be calculated
easily by considering an ideal heat pump operating on the reversed Carnot cycle:

If the low-temperature reservoir is at a temperature of 270 K (?3 °C) and the
interior of the building is at 280 K (7 °C) the relevant coefficient of performance is
27. This means only 1 joule of work is required to transfer 27 joules of heat from a
reservoir at 270 K to another at 280 K. The one joule of work ultimately ends up as
thermal energy in the interior of the building so for each 27 joules of heat that are
removed from the low-temperature reservoir, 28 joules of heat are added to the
building interior, making the heat pump even more attractive from an efficiency
perspective.[note 1]
As the temperature of the interior of the building rises progressively to 300 K
(27 °C) the coefficient of performance falls progressively to 9. This means each
joule of work is responsible for transferring 9 joules of heat out of the low-
temperature reservoir and into the building. Again, the 1 joule of work ultimately
ends up as thermal energy in the interior of the building so 10 joules of heat are
added to the building interior.[note 2]



This is the theoretical amount of heat pumped but in practice it will be less for various
reasons, for example if the outside unit has been installed where there is not enough
airflow. More data sharing with owners and academics—perhaps from heat
meters—could improve efficiency in the long run.[11]

History

[edit]

Milestones:

1748
William Cullen demonstrates artificial refrigeration.[12]

1834
Jacob Perkins patents a design for a practical refrigerator using dimethyl ether.[13]

1852
Lord Kelvin describes the theory underlying heat pumps.[14]

1855–1857
Peter von Rittinger develops and builds the first heat pump.[15]

1877
In the period before 1875, heat pumps were for the time being pursued for vapour
compression evaporation (open heat pump process) in salt works with their
obvious advantages for saving wood and coal. In 1857, Peter von Rittinger was the
first to try to implement the idea of vapor compression in a small pilot plant.
Presumably inspired by Rittinger's experiments in Ebensee, Antoine-Paul Piccard
from the University of Lausanne and the engineer J. H. Weibel from the
Weibel–Briquet company in Geneva built the world's first really functioning vapor
compression system with a two-stage piston compressor. In 1877 this first heat
pump in Switzerland was installed in the Bex salt works.[14][16]

1928
Aurel Stodola constructs a closed-loop heat pump (water source from Lake
Geneva) which provides heating for the Geneva city hall to this day.[17]

1937–1945
During the First World War, fuel prices were very high in Switzerland but it had
plenty of hydropower.[14]
:ÃƒÆ’Ã‚Â¢ÃƒÂ¢Ã¢â‚¬Å¡Ã‚Â¬Ãƒâ€¦Ã‚Â 18ÃƒÆ’Ã‚Â¢ÃƒÂ¢Ã¢â‚¬Å¡Ã‚Â¬Ãƒâ€¦Ã‚Â  In
the period before and especially during the Second World War, when neutral
Switzerland was completely surrounded by fascist-ruled countries, the coal
shortage became alarming again. Thanks to their leading position in energy
technology, the Swiss companies Sulzer, Escher Wyss and Brown Boveri built and
put in operation around 35 heat pumps between 1937 and 1945. The main heat
sources were lake water, river water, groundwater, and waste heat. Particularly
noteworthy are the six historic heat pumps from the city of Zurich with heat outputs
from 100 kW to 6 MW. An international milestone is the heat pump built by Escher



Wyss in 1937/38 to replace the wood stoves in the City Hall of Zurich. To avoid
noise and vibrations, a recently developed rotary piston compressor was used.
This historic heat pump heated the town hall for 63 years until 2001. Only then was
it replaced by a new, more efficient heat pump.[14]

1945
John Sumner, City Electrical Engineer for Norwich, installs an experimental water-
source heat pump fed central heating system, using a nearby river to heat new
Council administrative buildings. It had a seasonal efficiency ratio of 3.42, average
thermal delivery of 147 kW, and peak output of 234 kW.[18]

1948
Robert C. Webber is credited as developing and building the first ground-source
heat pump.[19]

1951
First large scale installation—the Royal Festival Hall in London is opened with a
town gas-powered reversible water-source heat pump, fed by the Thames, for both
winter heating and summer cooling needs.[18]

2019
The Kigali Amendment to phase out harmful refrigerants takes effect.

Types

[edit]

Air-source

[edit]
This section is an excerpt from Air source heat pump.[edit]
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Heat pump on balcony of apartment

An air source heat pump (ASHP) is a heat pump that can absorb heat from air outside a
building and release it inside; it uses the same vapor-compression refrigeration process
and much the same equipment as an air conditioner, but in the opposite direction.
ASHPs are the most common type of heat pump and, usually being smaller, tend to be



used to heat individual houses or flats rather than blocks, districts or industrial
processes.[20][21]

Air-to-air heat pumps provide hot or cold air directly to rooms, but do not usually provide
hot water. Air-to-water heat pumps use radiators or underfloor heating to heat a whole
house and are often also used to provide domestic hot water.

An ASHP can typically gain 4 kWh thermal energy from 1 kWh electric energy. They are
optimized for flow temperatures between 30 and 40 °C (86 and 104 °F), suitable for
buildings with heat emitters sized for low flow temperatures. With losses in efficiency, an
ASHP can even provide full central heating with a flow temperature up to 80 °C (176 °F).
[22]

As of 2023 about 10% of building heating worldwide is from ASHPs. They are the main
way to phase out gas boilers (also known as "furnaces") from houses, to avoid their
greenhouse gas emissions.[23]

Air-source heat pumps are used to move heat between two heat exchangers, one
outside the building which is fitted with fins through which air is forced using a fan and
the other which either directly heats the air inside the building or heats water which is
then circulated around the building through radiators or underfloor heating which
releases the heat to the building. These devices can also operate in a cooling mode
where they extract heat via the internal heat exchanger and eject it into the ambient air
using the external heat exchanger. Some can be used to heat water for washing which
is stored in a domestic hot water tank.[24]

Air-source heat pumps are relatively easy and inexpensive to install, so are the most
widely used type. In mild weather, coefficient of performance (COP) may be between 2
and 5, while at temperatures below around ?8 °C (18 °F) an air-source heat pump may
still achieve a COP of 1 to 4.[25]

While older air-source heat pumps performed relatively poorly at low temperatures and
were better suited for warm climates, newer models with variable-speed compressors
remain highly efficient in freezing conditions allowing for wide adoption and cost savings
in places like Minnesota and Maine in the United States.[26]

Ground source

[edit]
 
This section is an excerpt from Ground source heat pump.[edit]
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A heat pump in combination with heat and cold storage

A ground source heat pump (also geothermal heat pump) is a heating/cooling system for
buildings that use a type of heat pump to transfer heat to or from the ground, taking
advantage of the relative constancy of temperatures of the earth through the seasons.
Ground-source heat pumps (GSHPs) – or geothermal heat pumps (GHP), as they are
commonly termed in North America – are among the most energy-efficient technologies
for providing HVAC and water heating, using far less energy than can be achieved by
burning a fuel in a boiler/furnace or by use of resistive electric heaters.

Efficiency is given as a coefficient of performance (CoP) which is typically in the range 3
– 6, meaning that the devices provide 3 – 6 units of heat for each unit of electricity used.
Setup costs are higher than for other heating systems, due to the requirement to install
ground loops over large areas or to drill bore holes, and for this reason, ground source is
often suitable when new blocks of flats are built.[27] Otherwise air-source heat pumps
are often used instead.

Heat recovery ventilation

[edit]
Main article: Heat recovery ventilation

Exhaust air heat pumps extract heat from the exhaust air of a building and require
mechanical ventilation. Two classes exist:

Exhaust air-air heat pumps transfer heat to intake air.
Exhaust air-water heat pumps transfer heat to a heating circuit that includes a tank
of domestic hot water.

Solar-assisted

[edit]
 
This section is an excerpt from Solar-assisted heat pump.[edit]
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Hybrid photovoltaic-thermal solar panels of a SAHP in an experimental
installation at Department of Energy at Polytechnic of Milan

A solar-assisted heat pump (SAHP) is a machine that combines a heat pump and
thermal solar panels and/or PV solar panels in a single integrated system.[28] Typically
these two technologies are used separately (or only placing them in parallel) to produce
hot water.[29] In this system the solar thermal panel performs the function of the low
temperature heat source and the heat produced is used to feed the heat pump's
evaporator.[30] The goal of this system is to get high coefficient of performance (COP)
and then produce energy in a more efficient and less expensive way.
It is possible to use any type of solar thermal panel (sheet and tubes, roll-bond, heat
pipe, thermal plates) or hybrid (mono/polycrystalline, thin film) in combination with the
heat pump. The use of a hybrid panel is preferable because it allows covering a part of
the electricity demand of the heat pump and reduce the power consumption and
consequently the variable costs of the system.

Water-source

[edit]
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Water-source heat exchanger being installed

A water-source heat pump works in a similar manner to a ground-source heat pump,
except that it takes heat from a body of water rather than the ground. The body of water
does, however, need to be large enough to be able to withstand the cooling effect of the
unit without freezing or creating an adverse effect for wildlife.[31] The largest water-
source heat pump was installed in the Danish town of Esbjerg in 2023.[32][33]

Others

[edit]

A thermoacoustic heat pump operates as a thermoacoustic heat engine without
refrigerant but instead uses a standing wave in a sealed chamber driven by a
loudspeaker to achieve a temperature difference across the chamber.[34]

Electrocaloric heat pumps are solid state.[35]

Applications

[edit]

The International Energy Agency estimated that, as of 2021, heat pumps installed in
buildings have a combined capacity of more than 1000 GW.[4] They are used for
heating, ventilation, and air conditioning (HVAC) and may also provide domestic hot
water and tumble clothes drying.[36] The purchase costs are supported in various
countries by consumer rebates.[37]

Space heating and sometimes also cooling

[edit]

In HVAC applications, a heat pump is typically a vapor-compression refrigeration device
that includes a reversing valve and optimized heat exchangers so that the direction of
heat flow (thermal energy movement) may be reversed. The reversing valve switches
the direction of refrigerant through the cycle and therefore the heat pump may deliver
either heating or cooling to a building.

Because the two heat exchangers, the condenser and evaporator, must swap functions,
they are optimized to perform adequately in both modes. Therefore, the Seasonal
Energy Efficiency Rating (SEER in the US) or European seasonal energy efficiency ratio
of a reversible heat pump is typically slightly less than those of two separately optimized
machines. For equipment to receive the US Energy Star rating, it must have a rating of



at least 14 SEER. Pumps with ratings of 18 SEER or above are considered highly
efficient. The highest efficiency heat pumps manufactured are up to 24 SEER.[38]

Heating seasonal performance factor (in the US) or Seasonal Performance Factor (in
Europe) are ratings of heating performance. The SPF is Total heat output per annum /
Total electricity consumed per annum in other words the average heating COP over the
year.[39]

Window mounted heat pump

[edit]
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Saddle-style window mounted heat pump 3D sketch

Window mounted heat pumps run on standard 120v AC outlets and provide heating,
cooling, and humidity control. They are more efficient with lower noise levels,
condensation management, and a smaller footprint than window mounted air
conditioners that just do cooling.[40]

Water heating

[edit]

In water heating applications, heat pumps may be used to heat or preheat water for
swimming pools, homes or industry. Usually heat is extracted from outdoor air and
transferred to an indoor water tank.[41][42]

District heating

[edit]



Large (megawatt-scale) heat pumps are used for district heating.[43] However as of
2022 about 90% of district heat is from fossil fuels.[44] In Europe, heat pumps account
for a mere 1% of heat supply in district heating networks but several countries have
targets to decarbonise their networks between 2030 and 2040.[4] Possible sources of
heat for such applications are sewage water, ambient water (e.g. sea, lake and river
water), industrial waste heat, geothermal energy, flue gas, waste heat from district
cooling and heat from solar seasonal thermal energy storage.[45] Large-scale heat
pumps for district heating combined with thermal energy storage offer high flexibility for
the integration of variable renewable energy. Therefore, they are regarded as a key
technology for limiting climate change by phasing out fossil fuels.[45][46] They are also a
crucial element of systems which can both heat and cool districts.[47]

Industrial heating

[edit]

There is great potential to reduce the energy consumption and related greenhouse gas
emissions in industry by application of industrial heat pumps, for example for process
heat.[48][49] Short payback periods of less than 2 years are possible, while achieving a
high reduction of CO2 emissions (in some cases more than 50%).[50][51] Industrial heat
pumps can heat up to 200 °C, and can meet the heating demands of many light
industries.[52][53] In Europe alone, 15 GW of heat pumps could be installed in 3,000
facilities in the paper, food and chemicals industries.[4]

Performance

[edit]
Main article: Coefficient of performance

The performance of a heat pump is determined by the ability of the pump to extract heat
from a low temperature environment (the source) and deliver it to a higher temperature
environment (the sink).[54] Performance varies, depending on installation details,
temperature differences, site elevation, location on site, pipe runs, flow rates, and
maintenance.

In general, heat pumps work most efficiently (that is, the heat output produced for a
given energy input) when the difference between the heat source and the heat sink is
small. When using a heat pump for space or water heating, therefore, the heat pump will
be most efficient in mild conditions, and decline in efficiency on very cold days.
Performance metrics supplied to consumers attempt to take this variation into account.

Common performance metrics are the SEER (in cooling mode) and seasonal coefficient
of performance (SCOP) (commonly used just for heating), although SCOP can be used



for both modes of operation.[54] Larger values of either metric indicate better
performance.[54] When comparing the performance of heat pumps, the term
performance is preferred to efficiency, with coefficient of performance (COP) being used
to describe the ratio of useful heat movement per work input.[54] An electrical resistance
heater has a COP of 1.0, which is considerably lower than a well-designed heat pump
which will typically have a COP of 3 to 5 with an external temperature of 10 °C and an
internal temperature of 20 °C. Because the ground is a constant temperature source, a
ground-source heat pump is not subjected to large temperature fluctuations, and
therefore is the most energy-efficient type of heat pump.[54]

The "seasonal coefficient of performance" (SCOP) is a measure of the aggregate energy
efficiency measure over a period of one year which is dependent on regional climate.[54]
One framework for this calculation is given by the Commission Regulation (EU) No.
813/2013.[55]

A heat pump's operating performance in cooling mode is characterized in the US by
either its energy efficiency ratio (EER) or seasonal energy efficiency ratio (SEER), both
of which have units of BTU/(h·W) (note that 1 BTU/(h·W) = 0.293 W/W) and larger
values indicate better performance.

COP variation with output temperature

Pump
type and
source

Typical
use

35 °C
(e.g.

heated
screed
floor)

45 °C
(e.g. heated screed floor)

55 °C
(e.g. heated timber floor)

65 °C
(e.g. radiator or DHW)

75 °C
(e.g. radiator and DHW)

85 °C
(e.g. radiator and DHW)

High-
efficiency
air-source
heat pump
(ASHP), air
at ?20 °C[
56]

  2.2 2.0 ÃƒÆ’Ã‚Â¢ÃƒÂ¢Ã¢â‚¬Å¡Ã‚Â¬Ãƒâ€šÃ‚Â•ÃƒÆ’Ã‚Â¢ÃƒÂ¢Ã¢â‚¬Å¡Ã‚Â¬Ãƒâ€šÃ‚Â•ÃƒÆ’Ã‚Â¢ÃƒÂ¢Ã¢â‚¬Å¡Ã‚Â¬Ãƒâ€šÃ‚Â•ÃƒÆ’Ã‚Â¢ÃƒÂ¢Ã¢â‚¬Å¡Ã‚Â¬Ãƒâ€šÃ‚Â•

Two-stage
ASHP, air
at ?20 °C[
57]

Low source
temperature

2.4 2.2 1.9 ÃƒÆ’Ã‚Â¢ÃƒÂ¢Ã¢â‚¬Å¡Ã‚Â¬Ãƒâ€šÃ‚Â•ÃƒÆ’Ã‚Â¢ÃƒÂ¢Ã¢â‚¬Å¡Ã‚Â¬Ãƒâ€šÃ‚Â•ÃƒÆ’Ã‚Â¢ÃƒÂ¢Ã¢â‚¬Å¡Ã‚Â¬Ãƒâ€šÃ‚Â•

High-
efficiency
ASHP, air
at 0 °C[56]

Low output
temperature

3.8 2.8 2.2 2.0 ÃƒÆ’Ã‚Â¢ÃƒÂ¢Ã¢â‚¬Å¡Ã‚Â¬Ãƒâ€šÃ‚Â•ÃƒÆ’Ã‚Â¢ÃƒÂ¢Ã¢â‚¬Å¡Ã‚Â¬Ãƒâ€šÃ‚Â•



Prototype
transcritical
CO

2 (R744)
heat pump
with
tripartite
gas cooler,
source at
0 °C[58]

High output
temperature

3.3 ÃƒÆ’Ã‚Â¢ÃƒÂ¢Ã¢â‚¬Å¡Ã‚Â¬Ãƒâ€šÃ‚Â•ÃƒÆ’Ã‚Â¢ÃƒÂ¢Ã¢â‚¬Å¡Ã‚Â¬Ãƒâ€šÃ‚Â• 4.2 ÃƒÆ’Ã‚Â¢ÃƒÂ¢Ã¢â‚¬Å¡Ã‚Â¬Ãƒâ€šÃ‚Â• 3.0

Ground-
source
heat pump
(GSHP),
water at
0 °C[56]

  5.0 3.7 2.9 2.4 ÃƒÆ’Ã‚Â¢ÃƒÂ¢Ã¢â‚¬Å¡Ã‚Â¬Ãƒâ€šÃ‚Â•ÃƒÆ’Ã‚Â¢ÃƒÂ¢Ã¢â‚¬Å¡Ã‚Â¬Ãƒâ€šÃ‚Â•

GSHP,
ground at
10 °C[56]

Low output
temperature

7.2 5.0 3.7 2.9 2.4 ÃƒÆ’Ã‚Â¢ÃƒÂ¢Ã¢â‚¬Å¡Ã‚Â¬Ãƒâ€šÃ‚Â•

Theoretical
Carnot
cycle limit,
source
?20 °C

  5.6 4.9 4.4 4.0 3.7 3.4

Theoretical
Carnot
cycle limit,
source
0 °C

  8.8 7.1 6.0 5.2 4.6 4.2

Theoretical
Lorentzen
cycle limit (
CO

2 pump),
return fluid
25 °C,
source
0 °C[58]

  10.1 8.8 7.9 7.1 6.5 6.1



Theoretical
Carnot
cycle limit,
source
10 °C

  12.3 9.1 7.3 6.1 5.4 4.8

Carbon footprint

[edit]

The carbon footprint of heat pumps depends on their individual efficiency and how
electricity is produced. An increasing share of low-carbon energy sources such as wind
and solar will lower the impact on the climate.

heating system
emissions of

energy source
efficiency

resulting emissions
for thermal energy

heat pump with
onshore wind power

11 gCO2/kWh[59] 400% (COP=4) 3 gCO2/kWh

heat pump with global
electricity mix

436 gCO2/kWh[60]
(2022)

400% (COP=4) 109 gCO2/kWh

natural-gas thermal
(high efficiency)

201 gCO2/kWh[61] 90%[citation needed]223 gCO2/kWh

heat pump
electricity by lignite (old
power plant)
and low performance

1221 gCO2/kWh[
61]

300% (COP=3) 407 gCO2/kWh

In most settings, heat pumps will reduce CO2 emissions compared to heating systems
powered by fossil fuels.[62] In regions accounting for 70% of world energy consumption,
the emissions savings of heat pumps compared with a high-efficiency gas boiler are on
average above 45% and reach 80% in countries with cleaner electricity mixes.[4] These
values can be improved by 10 percentage points, respectively, with alternative
refrigerants. In the United States, 70% of houses could reduce emissions by installing a
heat pump.[63][4] The rising share of renewable electricity generation in many countries
is set to increase the emissions savings from heat pumps over time.[4]

Heating systems powered by green hydrogen are also low-carbon and may become
competitors, but are much less efficient due to the energy loss associated with hydrogen
conversion, transport and use. In addition, not enough green hydrogen is expected to be
available before the 2030s or 2040s.[64][65]

Operation



[edit]
See also: Vapor-compression refrigeration
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Figure 2: Temperature–entropy diagram of the vapor-compression cycle
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An internal view of the outdoor unit of an Ecodan air source heat pump



Image not found or type unknown

Large heat pump
setup for a
commercial building
Image not found or type unknown

Wiring and
connections to a
central air unit
inside

Vapor-compression uses a circulating refrigerant as the medium which absorbs heat
from one space, compresses it thereby increasing its temperature before releasing it in
another space. The system normally has eight main components: a compressor, a
reservoir, a reversing valve which selects between heating and cooling mode, two
thermal expansion valves (one used when in heating mode and the other when used in
cooling mode) and two heat exchangers, one associated with the external heat
source/sink and the other with the interior. In heating mode the external heat exchanger
is the evaporator and the internal one being the condenser; in cooling mode the roles
are reversed.

Circulating refrigerant enters the compressor in the thermodynamic state known as a
saturated vapor[66] and is compressed to a higher pressure, resulting in a higher
temperature as well. The hot, compressed vapor is then in the thermodynamic state
known as a superheated vapor and it is at a temperature and pressure at which it can be
condensed with either cooling water or cooling air flowing across the coil or tubes. In
heating mode this heat is used to heat the building using the internal heat exchanger,
and in cooling mode this heat is rejected via the external heat exchanger.

The condensed, liquid refrigerant, in the thermodynamic state known as a saturated
liquid, is next routed through an expansion valve where it undergoes an abrupt reduction



in pressure. That pressure reduction results in the adiabatic flash evaporation of a part
of the liquid refrigerant. The auto-refrigeration effect of the adiabatic flash evaporation
lowers the temperature of the liquid and-vapor refrigerant mixture to where it is colder
than the temperature of the enclosed space to be refrigerated.

The cold mixture is then routed through the coil or tubes in the evaporator. A fan
circulates the warm air in the enclosed space across the coil or tubes carrying the cold
refrigerant liquid and vapor mixture. That warm air evaporates the liquid part of the cold
refrigerant mixture. At the same time, the circulating air is cooled and thus lowers the
temperature of the enclosed space to the desired temperature. The evaporator is where
the circulating refrigerant absorbs and removes heat which is subsequently rejected in
the condenser and transferred elsewhere by the water or air used in the condenser.

To complete the refrigeration cycle, the refrigerant vapor from the evaporator is again a
saturated vapor and is routed back into the compressor.

Over time, the evaporator may collect ice or water from ambient humidity. The ice is
melted through defrosting cycle. An internal heat exchanger is either used to heat/cool
the interior air directly or to heat water that is then circulated through radiators or
underfloor heating circuit to either heat or cool the buildings.

Improvement of coefficient of performance by subcooling

[edit]
Main article: Subcooling

Heat input can be improved if the refrigerant enters the evaporator with a lower vapor
content. This can be achieved by cooling the liquid refrigerant after condensation. The
gaseous refrigerant condenses on the heat exchange surface of the condenser. To
achieve a heat flow from the gaseous flow center to the wall of the condenser, the
temperature of the liquid refrigerant must be lower than the condensation temperature.

Additional subcooling can be achieved by heat exchange between relatively warm liquid
refrigerant leaving the condenser and the cooler refrigerant vapor emerging from the
evaporator. The enthalpy difference required for the subcooling leads to the
superheating of the vapor drawn into the compressor. When the increase in cooling
achieved by subcooling is greater that the compressor drive input required to overcome
the additional pressure losses, such a heat exchange improves the coefficient of
performance.[67]

One disadvantage of the subcooling of liquids is that the difference between the
condensing temperature and the heat-sink temperature must be larger. This leads to a
moderately high pressure difference between condensing and evaporating pressure,
whereby the compressor energy increases.



Refrigerant choice

[edit]
Main article: Refrigerant

Pure refrigerants can be divided into organic substances (hydrocarbons (HCs),
chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons
(HFCs), hydrofluoroolefins (HFOs), and HCFOs), and inorganic substances (ammonia (
NH

3), carbon dioxide (CO

2), and water (H

2O)[68]).[69] Their boiling points are usually below ?25 °C.[70]

In the past 200 years, the standards and requirements for new refrigerants have
changed. Nowadays low global warming potential (GWP) is required, in addition to all
the previous requirements for safety, practicality, material compatibility, appropriate
atmospheric life, [clarification needed] and compatibility with high-efficiency products. By
2022, devices using refrigerants with a very low GWP still have a small market share but
are expected to play an increasing role due to enforced regulations,[71] as most
countries have now ratified the Kigali Amendment to ban HFCs.[72] Isobutane (R600A)
and propane (R290) are far less harmful to the environment than conventional
hydrofluorocarbons (HFC) and are already being used in air-source heat pumps.[73]
Propane may be the most suitable for high temperature heat pumps.[74] Ammonia
(R717) and carbon dioxide (R-744) also have a low GWP. As of 2023 smaller CO

2 heat pumps are not widely available and research and development of them
continues.[75] A 2024 report said that refrigerants with GWP are vulnerable to further
international restrictions.[76]

Until the 1990s, heat pumps, along with fridges and other related products used
chlorofluorocarbons (CFCs) as refrigerants, which caused major damage to the ozone
layer when released into the atmosphere. Use of these chemicals was banned or
severely restricted by the Montreal Protocol of August 1987.[77]

Replacements, including R-134a and R-410A, are hydrofluorocarbons (HFC) with similar
thermodynamic properties with insignificant ozone depletion potential (ODP) but had
problematic GWP.[78] HFCs are powerful greenhouse gases which contribute to climate
change.[79][80] Dimethyl ether (DME) also gained in popularity as a refrigerant in
combination with R404a.[81] More recent refrigerants include difluoromethane (R32)
with a lower GWP, but still over 600.

refrigerant 20-year GWP 100-year GWP
R-290 propane[82] 0.072 0.02

R-600a isobutane   3[83]



R-32[82] 491 136

R-410a[84] 4705 2285

R-134a[84] 4060 1470

R-404a[84] 7258 4808

Devices with R-290 refrigerant (propane) are expected to play a key role in the future.[74

][85] The 100-year GWP of propane, at 0.02, is extremely low and is approximately 7000
times less than R-32. However, the flammability of propane requires additional safety
measures: the maximum safe charges have been set significantly lower than for lower
flammability refrigerants (only allowing approximately 13.5 times less refrigerant in the
system than R-32).[86][87][88] This means that R-290 is not suitable for all situations or
locations. Nonetheless, by 2022, an increasing number of devices with R-290 were
offered for domestic use, especially in Europe.[citation needed]

At the same time,[when?] HFC refrigerants still dominate the market. Recent
government mandates have seen the phase-out of R-22 refrigerant. Replacements such
as R-32 and R-410A are being promoted as environmentally friendly but still have a high
GWP.[89] A heat pump typically uses 3 kg of refrigerant. With R-32 this amount still has
a 20-year impact equivalent to 7 tons of CO2, which corresponds to two years of natural
gas heating in an average household. Refrigerants with a high ODP have already been
phased out.[citation needed]

Government incentives

[edit]

Financial incentives aim to protect consumers from high fossil gas costs and to reduce
greenhouse gas emissions,[90] and are currently available in more than 30 countries
around the world, covering more than 70% of global heating demand in 2021.[4]

Australia

[edit]

Food processors, brewers, petfood producers and other industrial energy users are
exploring whether it is feasible to use renewable energy to produce industrial-grade
heat. Process heating accounts for the largest share of onsite energy use in Australian
manufacturing, with lower-temperature operations like food production particularly well-
suited to transition to renewables.

To help producers understand how they could benefit from making the switch, the
Australian Renewable Energy Agency (ARENA) provided funding to the Australian
Alliance for Energy Productivity (A2EP) to undertake pre-feasibility studies at a range of



sites around Australia, with the most promising locations advancing to full feasibility
studies.[91]

In an effort to incentivize energy efficiency and reduce environmental impact, the
Australian states of Victoria, New South Wales, and Queensland have implemented
rebate programs targeting the upgrade of existing hot water systems. These programs
specifically encourage the transition from traditional gas or electric systems to heat
pump based systems.[92][93][94][95][96]

Canada

[edit]

In 2022, the Canada Greener Homes Grant[97] provides up to $5000 for upgrades
(including certain heat pumps), and $600 for energy efficiency evaluations.

China

[edit]

Purchase subsidies in rural areas in the 2010s reduced burning coal for heating, which
had been causing ill health.[98]

In the 2024 report by the International Energy Agency (IEA) titled "The Future of Heat
Pumps in China," it is highlighted that China, as the world's largest market for heat
pumps in buildings, plays a critical role in the global industry. The country accounts for
over one-quarter of global sales, with a 12% increase in 2023 alone, despite a global
sales dip of 3% the same year.[99]

Heat pumps are now used in approximately 8% of all heating equipment sales for
buildings in China as of 2022, and they are increasingly becoming the norm in central
and southern regions for both heating and cooling. Despite their higher upfront costs
and relatively low awareness, heat pumps are favored for their energy efficiency,
consuming three to five times less energy than electric heaters or fossil fuel-based
solutions. Currently, decentralized heat pumps installed in Chinese buildings represent a
quarter of the global installed capacity, with a total capacity exceeding 250 GW, which
covers around 4% of the heating needs in buildings.[99]

Under the Announced Pledges Scenario (APS), which aligns with China's carbon
neutrality goals, the capacity is expected to reach 1,400 GW by 2050, meeting 25% of
heating needs. This scenario would require an installation of about 100 GW of heat
pumps annually until 2050. Furthermore, the heat pump sector in China employs over
300,000 people, with employment numbers expected to double by 2050, underscoring



the importance of vocational training for industry growth. This robust development in the
heat pump market is set to play a significant role in reducing direct emissions in
buildings by 30% and cutting PM2.5 emissions from residential heating by nearly 80%
by 2030.[99][100]

European Union

[edit]

To speed up the deployment rate of heat pumps, the European Commission launched
the Heat Pump Accelerator Platform in November 2024.[101] It will encourage industry
experts, policymakers, and stakeholders to collaborate, share best practices and ideas,
and jointly discuss measures that promote sustainable heating solutions.[102]

United Kingdom

[edit]

As of 2022: heat pumps have no Value Added Tax (VAT) although in Northern Ireland
they are taxed at the reduced rate of 5% instead of the usual level of VAT of 20% for
most other products.[103] As of 2022 the installation cost of a heat pump is more than a
gas boiler, but with the "Boiler Upgrade Scheme"[104] government grant and assuming
electricity/gas costs remain similar their lifetime costs would be similar on average.[105]
However lifetime cost relative to a gas boiler varies considerably depending on several
factors, such as the quality of the heat pump installation and the tariff used.[106] In 2024
England was criticised for still allowing new homes to be built with gas boilers, unlike
some other counties where this is banned.[107]

United States

[edit]
Further information: Environmental policy of the Joe Biden administration and Climate
change in the United States

The High-efficiency Electric Home Rebate Program was created in 2022 to award grants
to State energy offices and Indian Tribes in order to establish state-wide high-efficiency
electric-home rebates. Effective immediately, American households are eligible for a tax
credit to cover the costs of buying and installing a heat pump, up to $2,000. Starting in
2023, low- and moderate-level income households will be eligible for a heat-pump
rebate of up to $8,000.[108]



In 2022, more heat pumps were sold in the United States than natural gas furnaces.[109

]

In November 2023 Biden's administration allocated 169 million dollars from the Inflation
Reduction Act to speed up production of heat pumps. It used the Defense Production
Act to do so, because according to the administration, energy that is better for the
climate is also better for national security.[110]

Notes

[edit]
1. ^ As explained in Coefficient of performance TheoreticalMaxCOP =

(desiredIndoorTempC + 273) ÷ (desiredIndoorTempC - outsideTempC) = (7+273)
÷ (7 - (-3)) = 280÷10 = 28 [10]

2. ^ As explained in Coefficient of performance TheoreticalMaxCOP =
(desiredIndoorTempC + 273) ÷ (desiredIndoorTempC - outsideTempC) = (27+273)
÷ (27 - (-3)) = 300÷30 = 10[10]
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Heating, ventilation, and air conditioning
 



Fundamental
concepts

Air changes per hour
Bake-out
Building envelope
Convection
Dilution
Domestic energy consumption
Enthalpy
Fluid dynamics
Gas compressor
Heat pump and refrigeration cycle
Heat transfer
Humidity
Infiltration
Latent heat
Noise control
Outgassing
Particulates
Psychrometrics
Sensible heat
Stack effect
Thermal comfort
Thermal destratification
Thermal mass
Thermodynamics
Vapour pressure of water



Technology

Absorption-compression heat pump
Absorption refrigerator
Air barrier
Air conditioning
Antifreeze
Automobile air conditioning
Autonomous building
Building insulation materials
Central heating
Central solar heating
Chilled beam
Chilled water
Constant air volume (CAV)
Coolant
Cross ventilation
Dedicated outdoor air system (DOAS)
Deep water source cooling
Demand controlled ventilation (DCV)
Displacement ventilation
District cooling
District heating
Electric heating
Energy recovery ventilation (ERV)
Firestop
Forced-air
Forced-air gas
Free cooling
Heat recovery ventilation (HRV)
Hybrid heat
Hydronics
Ice storage air conditioning
Kitchen ventilation
Mixed-mode ventilation
Microgeneration
Passive cooling
Passive daytime radiative cooling
Passive house
Passive ventilation
Radiant heating and cooling
Radiant cooling
Radiant heating
Radon mitigation
Refrigeration
Renewable heat
Room air distribution
Solar air heat
Solar combisystem
Solar cooling
Solar heating
Thermal insulation
Thermosiphon
Underfloor air distribution
Underfloor heating
Vapor barrier
Vapor-compression refrigeration (VCRS)
Variable air volume (VAV)
Variable refrigerant flow (VRF)
Ventilation
Water heat recycling



Components

Air conditioner inverter
Air door
Air filter
Air handler
Air ionizer
Air-mixing plenum
Air purifier
Air source heat pump
Attic fan
Automatic balancing valve
Back boiler
Barrier pipe
Blast damper
Boiler
Centrifugal fan
Ceramic heater
Chiller
Condensate pump
Condenser
Condensing boiler
Convection heater
Compressor
Cooling tower
Damper
Dehumidifier
Duct
Economizer
Electrostatic precipitator
Evaporative cooler
Evaporator
Exhaust hood
Expansion tank
Fan
Fan coil unit
Fan filter unit
Fan heater
Fire damper
Fireplace
Fireplace insert
Freeze stat
Flue
Freon
Fume hood
Furnace
Gas compressor
Gas heater
Gasoline heater
Grease duct
Grille
Ground-coupled heat exchanger
Ground source heat pump
Heat exchanger
Heat pipe
Heat pump
Heating film
Heating system
HEPA
High efficiency glandless circulating pump
High-pressure cut-off switch
Humidifier
Infrared heater
Inverter compressor
Kerosene heater
Louver
Mechanical room
Oil heater
Packaged terminal air conditioner
Plenum space
Pressurisation ductwork
Process duct work
Radiator
Radiator reflector
Recuperator
Refrigerant
Register
Reversing valve
Run-around coil
Sail switch
Scroll compressor
Solar chimney
Solar-assisted heat pump
Space heater
Smoke canopy
Smoke damper
Smoke exhaust ductwork
Thermal expansion valve
Thermal wheel
Thermostatic radiator valve
Trickle vent
Trombe wall
TurboSwing
Turning vanes
Ultra-low particulate air (ULPA)
Whole-house fan
Windcatcher
Wood-burning stove
Zone valve



Measurement
and control

Air flow meter
Aquastat
BACnet
Blower door
Building automation
Carbon dioxide sensor
Clean air delivery rate (CADR)
Control valve
Gas detector
Home energy monitor
Humidistat
HVAC control system
Infrared thermometer
Intelligent buildings
LonWorks
Minimum efficiency reporting value (MERV)
Normal temperature and pressure (NTP)
OpenTherm
Programmable communicating thermostat
Programmable thermostat
Psychrometrics
Room temperature
Smart thermostat
Standard temperature and pressure (STP)
Thermographic camera
Thermostat
Thermostatic radiator valve

Professions,
trades,

and services

Architectural acoustics
Architectural engineering
Architectural technologist
Building services engineering
Building information modeling (BIM)
Deep energy retrofit
Duct cleaning
Duct leakage testing
Environmental engineering
Hydronic balancing
Kitchen exhaust cleaning
Mechanical engineering
Mechanical, electrical, and plumbing
Mold growth, assessment, and remediation
Refrigerant reclamation
Testing, adjusting, balancing



Industry
organizations

AHRI
AMCA
ASHRAE
ASTM International
BRE
BSRIA
CIBSE
Institute of Refrigeration
IIR
LEED
SMACNA
UMC

Health and safety

Indoor air quality (IAQ)
Passive smoking
Sick building syndrome (SBS)
Volatile organic compound (VOC)
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About Air conditioning

This article is about cooling of air. For the Curved Air album, see Air Conditioning
(album). For a similar device capable of both cooling and heating, see heat pump.
"a/c" redirects here. For the abbreviation used in banking and book-keeping, see
Account (disambiguation). For other uses, see AC.
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There are various types of air conditioners.
Popular examples include: Window-mounted
air conditioner (Suriname, 1955); Ceiling-
mounted cassette air conditioner (China,
2023); Wall-mounted air conditioner (Japan,
2020); Ceiling-mounted console (Also called
ceiling suspended) air conditioner (China,
2023); and portable air conditioner (Vatican
City, 2018).

 



Air conditioning, often abbreviated as A/C (US) or air con (UK),[1] is the process of
removing heat from an enclosed space to achieve a more comfortable interior
temperature (sometimes referred to as 'comfort cooling') and in some cases also strictly
controlling the humidity of internal air. Air conditioning can be achieved using a
mechanical 'air conditioner' or by other methods, including passive cooling and
ventilative cooling.[2][3] Air conditioning is a member of a family of systems and
techniques that provide heating, ventilation, and air conditioning (HVAC).[4] Heat pumps
are similar in many ways to air conditioners, but use a reversing valve to allow them both
to heat and to cool an enclosed space.[5]

Air conditioners, which typically use vapor-compression refrigeration, range in size from
small units used in vehicles or single rooms to massive units that can cool large
buildings.[6] Air source heat pumps, which can be used for heating as well as cooling,
are becoming increasingly common in cooler climates.

Air conditioners can reduce mortality rates due to higher temperature.[7] According to
the International Energy Agency (IEA) 1.6 billion air conditioning units were used
globally in 2016.[8] The United Nations called for the technology to be made more
sustainable to mitigate climate change and for the use of alternatives, like passive
cooling, evaporative cooling, selective shading, windcatchers, and better thermal
insulation.

History

[edit]

Air conditioning dates back to prehistory.[9] Double-walled living quarters, with a gap
between the two walls to encourage air flow, were found in the ancient city of Hamoukar,
in modern Syria.[10] Ancient Egyptian buildings also used a wide variety of passive air-
conditioning techniques.[11] These became widespread from the Iberian Peninsula
through North Africa, the Middle East, and Northern India.[12]

Passive techniques remained widespread until the 20th century when they fell out of
fashion and were replaced by powered air conditioning. Using information from
engineering studies of traditional buildings, passive techniques are being revived and
modified for 21st-century architectural designs.[13][12]
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An array of air conditioner condenser units outside a commercial office
building

Air conditioners allow the building's indoor environment to remain relatively constant,
largely independent of changes in external weather conditions and internal heat loads.
They also enable deep plan buildings to be created and have allowed people to live
comfortably in hotter parts of the world.[14]

Development

[edit]

Preceding discoveries

[edit]

In 1558, Giambattista della Porta described a method of chilling ice to temperatures far
below its freezing point by mixing it with potassium nitrate (then called "nitre") in his
popular science book Natural Magic.[15][16][17] In 1620, Cornelis Drebbel demonstrated
"Turning Summer into Winter" for James I of England, chilling part of the Great Hall of
Westminster Abbey with an apparatus of troughs and vats.[18] Drebbel's contemporary
Francis Bacon, like della Porta a believer in science communication, may not have been
present at the demonstration, but in a book published later the same year, he described
it as "experiment of artificial freezing" and said that "Nitre (or rather its spirit) is very cold,
and hence nitre or salt when added to snow or ice intensifies the cold of the latter, the
nitre by adding to its cold, but the salt by supplying activity to the cold of the snow."[15]

In 1758, Benjamin Franklin and John Hadley, a chemistry professor at the University of
Cambridge, conducted experiments applying the principle of evaporation as a means to
cool an object rapidly. Franklin and Hadley confirmed that the evaporation of highly
volatile liquids (such as alcohol and ether) could be used to drive down the temperature
of an object past the freezing point of water. They experimented with the bulb of a
mercury-in-glass thermometer as their object. They used a bellows to speed up the
evaporation. They lowered the temperature of the thermometer bulb down to ?14 °C
(7 °F) while the ambient temperature was 18 °C (64 °F). Franklin noted that soon after
they passed the freezing point of water 0 °C (32 °F), a thin film of ice formed on the
surface of the thermometer's bulb and that the ice mass was about  6 mm (1?4 in) thick
when they stopped the experiment upon reaching ?14 °C (7 °F). Franklin concluded:
"From this experiment, one may see the possibility of freezing a man to death on a warm
summer's day."[19]

The 19th century included many developments in compression technology. In 1820,
English scientist and inventor Michael Faraday discovered that compressing and



liquefying ammonia could chill air when the liquefied ammonia was allowed to
evaporate.[20] In 1842, Florida physician John Gorrie used compressor technology to
create ice, which he used to cool air for his patients in his hospital in Apalachicola,
Florida. He hoped to eventually use his ice-making machine to regulate the temperature
of buildings.[20][21] He envisioned centralized air conditioning that could cool entire
cities. Gorrie was granted a patent in 1851,[22] but following the death of his main
backer, he was not able to realize his invention.[23] In 1851, James Harrison created the
first mechanical ice-making machine in Geelong, Australia, and was granted a patent for
an ether vapor-compression refrigeration system in 1855 that produced three tons of ice
per day.[24] In 1860, Harrison established a second ice company. He later entered the
debate over competing against the American advantage of ice-refrigerated beef sales to
the United Kingdom.[24]

First devices

[edit]
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Willis Carrier, who is credited with building the first modern electrical air
conditioning unit

Electricity made the development of effective units possible. In 1901, American inventor
Willis H. Carrier built what is considered the first modern electrical air conditioning unit.[
25][26][27][28] In 1902, he installed his first air-conditioning system, in the Sackett-
Wilhelms Lithographing & Publishing Company in Brooklyn, New York.[29] His invention
controlled both the temperature and humidity, which helped maintain consistent paper
dimensions and ink alignment at the printing plant. Later, together with six other
employees, Carrier formed The Carrier Air Conditioning Company of America, a
business that in 2020 employed 53,000 people and was valued at $18.6 billion.[30][31]

In 1906, Stuart W. Cramer of Charlotte, North Carolina, was exploring ways to add
moisture to the air in his textile mill. Cramer coined the term "air conditioning" in a patent



claim which he filed that year, where he suggested that air conditioning was analogous
to "water conditioning", then a well-known process for making textiles easier to process.[
32] He combined moisture with ventilation to "condition" and change the air in the
factories; thus, controlling the humidity that is necessary in textile plants. Willis Carrier
adopted the term and incorporated it into the name of his company.[33]

Domestic air conditioning soon took off. In 1914, the first domestic air conditioning was
installed in Minneapolis in the home of Charles Gilbert Gates. It is, however, possible
that the considerable device (c. 2.1 m × 1.8 m × 6.1 m; 7 ft × 6 ft × 20 ft) was never
used, as the house remained uninhabited[20] (Gates had already died in October 1913.)

In 1931, H.H. Schultz and J.Q. Sherman developed what would become the most
common type of individual room air conditioner: one designed to sit on a window ledge.
The units went on sale in 1932 at US$10,000 to $50,000 (the equivalent of $200,000 to
$1,100,000 in 2023.)[20] A year later, the first air conditioning systems for cars were
offered for sale.[34] Chrysler Motors introduced the first practical semi-portable air
conditioning unit in 1935,[35] and Packard became the first automobile manufacturer to
offer an air conditioning unit in its cars in 1939.[36]

Further development

[edit]

Innovations in the latter half of the 20th century allowed more ubiquitous air conditioner
use. In 1945, Robert Sherman of Lynn, Massachusetts, invented a portable, in-window
air conditioner that cooled, heated, humidified, dehumidified, and filtered the air.[37] The
first inverter air conditioners were released in 1980–1981.[38][39]

In 1954, Ned Cole, a 1939 architecture graduate from the University of Texas at Austin,
developed the first experimental "suburb" with inbuilt air conditioning in each house. 22
homes were developed on a flat, treeless track in northwest Austin, Texas, and the
community was christened the 'Austin Air-Conditioned Village.' The residents were
subjected to a year-long study of the effects of air conditioning led by the nation’s
premier air conditioning companies, builders, and social scientists. In addition,
researchers from UT’s Health Service and Psychology Department studied the effects
on the "artificially cooled humans." One of the more amusing discoveries was that each
family reported being troubled with scorpions, the leading theory being that scorpions
sought cool, shady places. Other reported changes in lifestyle were that mothers baked
more, families ate heavier foods, and they were more apt to choose hot drinks.[40][41]

Air conditioner adoption tends to increase above around $10,000 annual household
income in warmer areas.[42] Global GDP growth explains around 85% of increased air
condition adoption by 2050, while the remaining 15% can be explained by climate



change.[42]

As of 2016 an estimated 1.6 billion air conditioning units were used worldwide, with over
half of them in China and USA, and a total cooling capacity of 11,675 gigawatts.[8][43]
The International Energy Agency predicted in 2018 that the number of air conditioning
units would grow to around 4 billion units by 2050 and that the total cooling capacity
would grow to around 23,000 GW, with the biggest increases in India and China.[8]
Between 1995 and 2004, the proportion of urban households in China with air
conditioners increased from 8% to 70%.[44] As of 2015, nearly 100 million homes, or
about 87% of US households, had air conditioning systems.[45] In 2019, it was
estimated that 90% of new single-family homes constructed in the US included air
conditioning (ranging from 99% in the South to 62% in the West).[46][47]

Operation

[edit]

Operating principles

[edit]
Main article: Vapor-compression refrigeration
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A simple stylized diagram of the refrigeration cycle: 1) condensing coil,
2) expansion valve, 3) evaporator coil, 4) compressor

Cooling in traditional air conditioner systems is accomplished using the vapor-
compression cycle, which uses a refrigerant's forced circulation and phase change
between gas and liquid to transfer heat.[48][49] The vapor-compression cycle can occur
within a unitary, or packaged piece of equipment; or within a chiller that is connected to
terminal cooling equipment (such as a fan coil unit in an air handler) on its evaporator
side and heat rejection equipment such as a cooling tower on its condenser side. An air
source heat pump shares many components with an air conditioning system, but
includes a reversing valve, which allows the unit to be used to heat as well as cool a
space.[50]

Air conditioning equipment will reduce the absolute humidity of the air processed by the
system if the surface of the evaporator coil is significantly cooler than the dew point of
the surrounding air. An air conditioner designed for an occupied space will typically



achieve a 30% to 60% relative humidity in the occupied space.[51]

Most modern air-conditioning systems feature a dehumidification cycle during which the
compressor runs. At the same time, the fan is slowed to reduce the evaporator
temperature and condense more water. A dehumidifier uses the same refrigeration cycle
but incorporates both the evaporator and the condenser into the same air path; the air
first passes over the evaporator coil, where it is cooled[52] and dehumidified before
passing over the condenser coil, where it is warmed again before it is released back into
the room.[citation needed]

Free cooling can sometimes be selected when the external air is cooler than the internal
air. Therefore, the compressor does not need to be used, resulting in high cooling
efficiencies for these times. This may also be combined with seasonal thermal energy
storage.[53]

Heating

[edit]
Main article: Heat pump

Some air conditioning systems can reverse the refrigeration cycle and act as an air
source heat pump, thus heating instead of cooling the indoor environment. They are
also commonly referred to as "reverse cycle air conditioners". The heat pump is
significantly more energy-efficient than electric resistance heating, because it moves
energy from air or groundwater to the heated space and the heat from purchased
electrical energy. When the heat pump is in heating mode, the indoor evaporator coil
switches roles and becomes the condenser coil, producing heat. The outdoor condenser
unit also switches roles to serve as the evaporator and discharges cold air (colder than
the ambient outdoor air).

Most air source heat pumps become less efficient in outdoor temperatures lower than
4 °C or 40 °F.[54] This is partly because ice forms on the outdoor unit's heat exchanger
coil, which blocks air flow over the coil. To compensate for this, the heat pump system
must temporarily switch back into the regular air conditioning mode to switch the outdoor
evaporator coil back to the condenser coil, to heat up and defrost. Therefore, some heat
pump systems will have electric resistance heating in the indoor air path that is activated
only in this mode to compensate for the temporary indoor air cooling, which would
otherwise be uncomfortable in the winter.

Newer models have improved cold-weather performance, with efficient heating capacity
down to ?14 °F (?26 °C).[55][54][56] However, there is always a chance that the
humidity that condenses on the heat exchanger of the outdoor unit could freeze, even in
models that have improved cold-weather performance, requiring a defrosting cycle to be



performed.

The icing problem becomes much more severe with lower outdoor temperatures, so
heat pumps are sometimes installed in tandem with a more conventional form of
heating, such as an electrical heater, a natural gas, heating oil, or wood-burning
fireplace or central heating, which is used instead of or in addition to the heat pump
during harsher winter temperatures. In this case, the heat pump is used efficiently during
milder temperatures, and the system is switched to the conventional heat source when
the outdoor temperature is lower.

Performance

[edit]
Main articles: coefficient of performance, Seasonal energy efficiency ratio, and
European seasonal energy efficiency ratio

The coefficient of performance (COP) of an air conditioning system is a ratio of useful
heating or cooling provided to the work required.[57][58] Higher COPs equate to lower
operating costs. The COP usually exceeds 1; however, the exact value is highly
dependent on operating conditions, especially absolute temperature and relative
temperature between sink and system, and is often graphed or averaged against
expected conditions.[59] Air conditioner equipment power in the U.S. is often described
in terms of "tons of refrigeration", with each approximately equal to the cooling power of
one short ton (2,000 pounds (910 kg) of ice melting in a 24-hour period. The value is
equal to 12,000 BTUIT per hour, or 3,517 watts.[60] Residential central air systems are
usually from 1 to 5 tons (3.5 to 18 kW) in capacity.[citation needed]

The efficiency of air conditioners is often rated by the seasonal energy efficiency ratio
(SEER), which is defined by the Air Conditioning, Heating and Refrigeration Institute in
its 2008 standard AHRI 210/240, Performance Rating of Unitary Air-Conditioning and
Air-Source Heat Pump Equipment.[61] A similar standard is the European seasonal
energy efficiency ratio (ESEER).[citation needed]

Efficiency is strongly affected by the humidity of the air to be cooled. Dehumidifying the
air before attempting to cool it can reduce subsequent cooling costs by as much as 90
percent. Thus, reducing dehumidifying costs can materially affect overall air conditioning
costs.[62]

Control system

[edit]

Wireless remote control



[edit]
Main articles: Remote control and Infrared blaster
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This type of controller uses an infrared LED to relay commands from a remote control to
the air conditioner. The output of the infrared LED (like that of any infrared remote) is
invisible to the human eye because its wavelength is beyond the range of visible light
(940 nm). This system is commonly used on mini-split air conditioners because it is
simple and portable. Some window and ducted central air conditioners uses it as well.

Wired controller

[edit]
Main article: Thermostat
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Several wired controllers (Indonesia,
2024)

A wired controller, also called a "wired thermostat," is a device that controls an air
conditioner by switching heating or cooling on or off. It uses different sensors to measure
temperatures and actuate control operations. Mechanical thermostats commonly use
bimetallic strips, converting a temperature change into mechanical displacement, to
actuate control of the air conditioner. Electronic thermostats, instead, use a thermistor or
other semiconductor sensor, processing temperature change as electronic signals to
control the air conditioner.

These controllers are usually used in hotel rooms because they are permanently
installed into a wall and hard-wired directly into the air conditioner unit, eliminating the
need for batteries.

Types

[edit]
 



Types
Typical

Capacity*
Air supply Mounting Typical application

Mini-split small – large Direct Wall Residential

Window
very small –
small

Direct Window Residential

Portable
very small –
small

Direct /
Ducted

Floor
Residential, remote
areas

Ducted (individual)
small – very
large

Ducted Ceiling
Residential,
commercial

Ducted (central)
medium – very
large

Ducted Ceiling
Residential,
commercial

Ceiling suspended medium – large Direct Ceiling Commercial

Cassette medium – large
Direct /
Ducted

Ceiling Commercial

Floor standing medium – large
Direct /
Ducted

Floor Commercial

Packaged very large
Direct /
Ducted

Floor Commercial

Packaged RTU
(Rooftop Unit)

very large Ducted Rooftop Commercial

* where the typical capacity is in kilowatt as follows:

very small: <1.5 kW
small: 1.5–3.5 kW
medium: 4.2–7.1 kW
large: 7.2–14 kW
very large: >14 kW

Mini-split and multi-split systems

[edit]
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Evaporator, indoor unit, or terminal, side of a ductless split-type air
conditioner



Ductless systems (often mini-split, though there are now ducted mini-split) typically
supply conditioned and heated air to a single or a few rooms of a building, without ducts
and in a decentralized manner.[63] Multi-zone or multi-split systems are a common
application of ductless systems and allow up to eight rooms (zones or locations) to be
conditioned independently from each other, each with its indoor unit and simultaneously
from a single outdoor unit.

The first mini-split system was sold in 1961 by Toshiba in Japan, and the first wall-
mounted mini-split air conditioner was sold in 1968 in Japan by Mitsubishi Electric,
where small home sizes motivated their development. The Mitsubishi model was the first
air conditioner with a cross-flow fan.[64][65][66] In 1969, the first mini-split air conditioner
was sold in the US.[67] Multi-zone ductless systems were invented by Daikin in 1973,
and variable refrigerant flow systems (which can be thought of as larger multi-split
systems) were also invented by Daikin in 1982. Both were first sold in Japan.[68]
Variable refrigerant flow systems when compared with central plant cooling from an air
handler, eliminate the need for large cool air ducts, air handlers, and chillers; instead
cool refrigerant is transported through much smaller pipes to the indoor units in the
spaces to be conditioned, thus allowing for less space above dropped ceilings and a
lower structural impact, while also allowing for more individual and independent
temperature control of spaces. The outdoor and indoor units can be spread across the
building.[69] Variable refrigerant flow indoor units can also be turned off individually in
unused spaces.[citation needed] The lower start-up power of VRF's DC inverter
compressors and their inherent DC power requirements also allow VRF solar-powered
heat pumps to be run using DC-providing solar panels.

Ducted central systems

[edit]

Split-system central air conditioners consist of two heat exchangers, an outside unit (the
condenser) from which heat is rejected to the environment and an internal heat
exchanger (the evaporator, or Fan Coil Unit, FCU) with the piped refrigerant being
circulated between the two. The FCU is then connected to the spaces to be cooled by
ventilation ducts.[70] Floor standing air conditioners are similar to this type of air
conditioner but sit within spaces that need cooling.

Central plant cooling

[edit]
See also: Chiller
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Industrial air conditioners on top of the shopping mall Passage in Linz, Austria

Large central cooling plants may use intermediate coolant such as chilled water pumped
into air handlers or fan coil units near or in the spaces to be cooled which then duct or
deliver cold air into the spaces to be conditioned, rather than ducting cold air directly to
these spaces from the plant, which is not done due to the low density and heat capacity
of air, which would require impractically large ducts. The chilled water is cooled by
chillers in the plant, which uses a refrigeration cycle to cool water, often transferring its
heat to the atmosphere even in liquid-cooled chillers through the use of cooling towers.
Chillers may be air- or liquid-cooled.[71][72]

Portable units

[edit]

A portable system has an indoor unit on wheels connected to an outdoor unit via flexible
pipes, similar to a permanently fixed installed unit (such as a ductless split air
conditioner).

Hose systems, which can be monoblock or air-to-air, are vented to the outside via air
ducts. The monoblock type collects the water in a bucket or tray and stops when full.
The air-to-air type re-evaporates the water, discharges it through the ducted hose, and
can run continuously. Many but not all portable units draw indoor air and expel it
outdoors through a single duct, negatively impacting their overall cooling efficiency.

Many portable air conditioners come with heat as well as a dehumidification function.[73]

Window unit and packaged terminal

[edit]
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Through-the-wall PTAC units, University Motor Inn, Philadelphia

Main article: Packaged terminal air conditioner

The packaged terminal air conditioner (PTAC), through-the-wall, and window air
conditioners are similar. These units are installed on a window frame or on a wall
opening. The unit usually has an internal partition separating its indoor and outdoor
sides, which contain the unit's condenser and evaporator, respectively. PTAC systems
may be adapted to provide heating in cold weather, either directly by using an electric
strip, gas, or other heaters, or by reversing the refrigerant flow to heat the interior and
draw heat from the exterior air, converting the air conditioner into a heat pump. They
may be installed in a wall opening with the help of a special sleeve on the wall and a
custom grill that is flush with the wall and window air conditioners can also be installed in
a window, but without a custom grill.[74]

Packaged air conditioner

[edit]

Packaged air conditioners (also known as self-contained units)[75][76] are central
systems that integrate into a single housing all the components of a split central system,
and deliver air, possibly through ducts, to the spaces to be cooled. Depending on their
construction they may be outdoors or indoors, on roofs (rooftop units),[77][78] draw the
air to be conditioned from inside or outside a building and be water or air-cooled. Often,
outdoor units are air-cooled while indoor units are liquid-cooled using a cooling tower.[70

][79][80][81][82][83]

Types of compressors

[edit]
 

Compressor
types

Common
applications

Typical
capacity

Efficiency Durability Repairability



Reciprocating
Refrigerator, Walk-in
freezer, portable air
conditioners

small –
large

very low
(small
capacity)

medium
(large
capacity)

very low medium

Rotary vane
Residential mini
splits

small low low easy

Scroll
Commercial and
central systems, VRF

medium medium medium easy

Rotary screw Commercial chiller
medium –
large

medium medium hard

Centrifugal Commercial chiller very large medium high hard

Maglev
Centrifugal

Commercial chiller very large high very high very hard

Reciprocating

[edit]
Main article: Reciprocating compressor

This compressor consists of a crankcase, crankshaft, piston rod, piston, piston ring,
cylinder head and valves. [citation needed]

Scroll

[edit]
Main article: Scroll compressor

This compressor uses two interleaving scrolls to compress the refrigerant.[84] it consists
of one fixed and one orbiting scrolls. This type of compressor is more efficient because it
has 70 percent less moving parts than a reciprocating compressor. [citation needed]

Screw

[edit]
Main article: Rotary-screw compressor

This compressor use two very closely meshing spiral rotors to compress the gas. The
gas enters at the suction side and moves through the threads as the screws rotate. The



meshing rotors force the gas through the compressor, and the gas exits at the end of the
screws. The working area is the inter-lobe volume between the male and female rotors.
It is larger at the intake end, and decreases along the length of the rotors until the
exhaust port. This change in volume is the compression. [citation needed]

Capacity modulation technologies

[edit]

There are several ways to modulate the cooling capacity in refrigeration or air
conditioning and heating systems. The most common in air conditioning are: on-off
cycling, hot gas bypass, use or not of liquid injection, manifold configurations of multiple
compressors, mechanical modulation (also called digital), and inverter technology. [citation needed]

Hot gas bypass

[edit]

Hot gas bypass involves injecting a quantity of gas from discharge to the suction side.
The compressor will keep operating at the same speed, but due to the bypass, the
refrigerant mass flow circulating with the system is reduced, and thus the cooling
capacity. This naturally causes the compressor to run uselessly during the periods when
the bypass is operating. The turn down capacity varies between 0 and 100%.[85]

Manifold configurations

[edit]

Several compressors can be installed in the system to provide the peak cooling
capacity. Each compressor can run or not in order to stage the cooling capacity of the
unit. The turn down capacity is either 0/33/66 or 100% for a trio configuration and either
0/50 or 100% for a tandem.[citation needed]

Mechanically modulated compressor

[edit]

This internal mechanical capacity modulation is based on periodic compression process
with a control valve, the two scroll set move apart stopping the compression for a given
time period. This method varies refrigerant flow by changing the average time of
compression, but not the actual speed of the motor. Despite an excellent turndown ratio
– from 10 to 100% of the cooling capacity, mechanically modulated scrolls have high



energy consumption as the motor continuously runs.[citation needed]

Variable-speed compressor

[edit]
Main article: Inverter compressor

This system uses a variable-frequency drive (also called an Inverter) to control the
speed of the compressor. The refrigerant flow rate is changed by the change in the
speed of the compressor. The turn down ratio depends on the system configuration and
manufacturer. It modulates from 15 or 25% up to 100% at full capacity with a single
inverter from 12 to 100% with a hybrid tandem. This method is the most efficient way to
modulate an air conditioner's capacity. It is up to 58% more efficient than a fixed speed
system.[citation needed]

Impact

[edit]

Health effects

[edit]
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Rooftop condenser unit fitted on top of an Osaka Municipal Subway 10 series
subway carriage. Air conditioning has become increasingly prevalent on
public transport vehicles as a form of climate control, and to ensure
passenger comfort and drivers' occupational safety and health.

In hot weather, air conditioning can prevent heat stroke, dehydration due to excessive
sweating, electrolyte imbalance, kidney failure, and other issues due to hyperthermia.[8][
86] Heat waves are the most lethal type of weather phenomenon in the United States.[
87][88] A 2020 study found that areas with lower use of air conditioning correlated with
higher rates of heat-related mortality and hospitalizations.[89] The August 2003 France
heatwave resulted in approximately 15,000 deaths, where 80% of the victims were over
75 years old. In response, the French government required all retirement homes to have
at least one air-conditioned room at 25 °C (77 °F) per floor during heatwaves.[8]



Air conditioning (including filtration, humidification, cooling and disinfection) can be used
to provide a clean, safe, hypoallergenic atmosphere in hospital operating rooms and
other environments where proper atmosphere is critical to patient safety and well-being.
It is sometimes recommended for home use by people with allergies, especially mold.[90

][91] However, poorly maintained water cooling towers can promote the growth and
spread of microorganisms such as Legionella pneumophila, the infectious agent
responsible for Legionnaires' disease. As long as the cooling tower is kept clean (usually
by means of a chlorine treatment), these health hazards can be avoided or reduced. The
state of New York has codified requirements for registration, maintenance, and testing of
cooling towers to protect against Legionella.[92]

Economic effects

[edit]

First designed to benefit targeted industries such as the press as well as large factories,
the invention quickly spread to public agencies and administrations with studies with
claims of increased productivity close to 24% in places equipped with air conditioning.[
93]

Air conditioning caused various shifts in demography, notably that of the United States
starting from the 1970s. In the US, the birth rate was lower in the spring than during
other seasons until the 1970s but this difference then declined since then.[94] As of
2007, the Sun Belt contained 30% of the total US population while it was inhabited by
24% of Americans at the beginning of the 20th century.[95] Moreover, the summer
mortality rate in the US, which had been higher in regions subject to a heat wave during
the summer, also evened out.[7]

The spread of the use of air conditioning acts as a main driver for the growth of global
demand of electricity.[96] According to a 2018 report from the International Energy
Agency (IEA), it was revealed that the energy consumption for cooling in the United
States, involving 328 million Americans, surpasses the combined energy consumption of
4.4 billion people in Africa, Latin America, the Middle East, and Asia (excluding China).[8

] A 2020 survey found that an estimated 88% of all US households use AC, increasing
to 93% when solely looking at homes built between 2010 and 2020.[97]

Environmental effects

[edit]
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Air conditioner farm in the facade of a building in Singapore

Space cooling including air conditioning accounted globally for 2021 terawatt-hours of
energy usage in 2016 with around 99% in the form of electricity, according to a 2018
report on air-conditioning efficiency by the International Energy Agency.[8] The report
predicts an increase of electricity usage due to space cooling to around 6200 TWh by
2050,[8][98] and that with the progress currently seen, greenhouse gas emissions
attributable to space cooling will double: 1,135 million tons (2016) to 2,070 million tons.[8

] There is some push to increase the energy efficiency of air conditioners. United
Nations Environment Programme (UNEP) and the IEA found that if air conditioners
could be twice as effective as now, 460 billion tons of GHG could be cut over 40 years.[
99] The UNEP and IEA also recommended legislation to decrease the use of
hydrofluorocarbons, better building insulation, and more sustainable temperature-
controlled food supply chains going forward.[99]

Refrigerants have also caused and continue to cause serious environmental issues,
including ozone depletion and climate change, as several countries have not yet ratified
the Kigali Amendment to reduce the consumption and production of hydrofluorocarbons.
[100] CFCs and HCFCs refrigerants such as R-12 and R-22, respectively, used within
air conditioners have caused damage to the ozone layer,[101] and hydrofluorocarbon
refrigerants such as R-410A and R-404A, which were designed to replace CFCs and
HCFCs, are instead exacerbating climate change.[102] Both issues happen due to the
venting of refrigerant to the atmosphere, such as during repairs. HFO refrigerants, used
in some if not most new equipment, solve both issues with an ozone damage potential
(ODP) of zero and a much lower global warming potential (GWP) in the single or double
digits vs. the three or four digits of hydrofluorocarbons.[103]

Hydrofluorocarbons would have raised global temperatures by around 0.3–0.5 °C
(0.5–0.9 °F) by 2100 without the Kigali Amendment. With the Kigali Amendment, the
increase of global temperatures by 2100 due to hydrofluorocarbons is predicted to be
around 0.06 °C (0.1 °F).[104]

Alternatives to continual air conditioning include passive cooling, passive solar cooling,
natural ventilation, operating shades to reduce solar gain, using trees, architectural
shades, windows (and using window coatings) to reduce solar gain.[citation needed]



Social effects

[edit]

Socioeconomic groups with a household income below around $10,000 tend to have a
low air conditioning adoption,[42] which worsens heat-related mortality.[7] The lack of
cooling can be hazardous, as areas with lower use of air conditioning correlate with
higher rates of heat-related mortality and hospitalizations.[89] Premature mortality in
NYC is projected to grow between 47% and 95% in 30 years, with lower-income and
vulnerable populations most at risk.[89] Studies on the correlation between heat-related
mortality and hospitalizations and living in low socioeconomic locations can be traced in
Phoenix, Arizona,[105] Hong Kong,[106] China,[106] Japan,[107] and Italy.[108][109]
Additionally, costs concerning health care can act as another barrier, as the lack of
private health insurance during a 2009 heat wave in Australia, was associated with heat-
related hospitalization.[109]

Disparities in socioeconomic status and access to air conditioning are connected by
some to institutionalized racism, which leads to the association of specific marginalized
communities with lower economic status, poorer health, residing in hotter
neighborhoods, engaging in physically demanding labor, and experiencing limited
access to cooling technologies such as air conditioning.[109] A study overlooking
Chicago, Illinois, Detroit, and Michigan found that black households were half as likely to
have central air conditioning units when compared to their white counterparts.[110]
Especially in cities, Redlining creates heat islands, increasing temperatures in certain
parts of the city.[109] This is due to materials heat-absorbing building materials and
pavements and lack of vegetation and shade coverage.[111] There have been initiatives
that provide cooling solutions to low-income communities, such as public cooling
spaces.[8][111]

Other techniques

[edit]

Buildings designed with passive air conditioning are generally less expensive to
construct and maintain than buildings with conventional HVAC systems with lower
energy demands.[112] While tens of air changes per hour, and cooling of tens of
degrees, can be achieved with passive methods, site-specific microclimate must be
taken into account, complicating building design.[12]

Many techniques can be used to increase comfort and reduce the temperature in
buildings. These include evaporative cooling, selective shading, wind, thermal
convection, and heat storage.[113]



Passive ventilation

[edit]
This section is an excerpt from Passive ventilation.[edit]
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The ventilation system of a regular earthship

Image not found or type unknown

Dogtrot houses are designed to maximise natural ventilation.

Image not found or type unknown

A roof turbine ventilator, colloquially known as a 'Whirly Bird' is an application
of wind driven ventilation.

Passive ventilation is the process of supplying air to and removing air from an indoor
space without using mechanical systems. It refers to the flow of external air to an indoor
space as a result of pressure differences arising from natural forces.



There are two types of natural ventilation occurring in buildings: wind driven ventilation
and buoyancy-driven ventilation. Wind driven ventilation arises from the different
pressures created by wind around a building or structure, and openings being formed on
the perimeter which then permit flow through the building. Buoyancy-driven ventilation
occurs as a result of the directional buoyancy force that results from temperature
differences between the interior and exterior.[114]
Since the internal heat gains which create temperature differences between the interior
and exterior are created by natural processes, including the heat from people, and wind
effects are variable, naturally ventilated buildings are sometimes called "breathing
buildings".

Passive cooling

[edit]
 
This section is an excerpt from Passive cooling.[edit]
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A traditional Iranian solar cooling design using a wind tower

Passive cooling is a building design approach that focuses on heat gain control and heat
dissipation in a building in order to improve the indoor thermal comfort with low or no
energy consumption.[115][116] This approach works either by preventing heat from
entering the interior (heat gain prevention) or by removing heat from the building (natural
cooling).[117]

Natural cooling utilizes on-site energy, available from the natural environment, combined
with the architectural design of building components (e.g. building envelope), rather than
mechanical systems to dissipate heat.[118] Therefore, natural cooling depends not only
on the architectural design of the building but on how the site's natural resources are
used as heat sinks (i.e. everything that absorbs or dissipates heat). Examples of on-site
heat sinks are the upper atmosphere (night sky), the outdoor air (wind), and the
earth/soil.

Passive cooling is an important tool for design of buildings for climate change
adaptation – reducing dependency on energy-intensive air conditioning in warming



environments.[119][120]

Image not found or type unknown

A pair of short windcatchers (malqaf) used in traditional architecture; wind is
forced down on the windward side and leaves on the leeward side (cross-
ventilation). In the absence of wind, the circulation can be driven with
evaporative cooling in the inlet (which is also designed to catch dust). In the
center, a shuksheika (roof lantern vent), used to shade the qa'a below while
allowing hot air rise out of it (stack effect).[11]

Daytime radiative cooling

[edit]

Image not found or type unknown

Passive daytime radiative cooling (PDRC) surfaces are high in solar
reflectance and heat emittance, cooling with zero energy use or pollution.[121

]

Passive daytime radiative cooling (PDRC) surfaces reflect incoming solar radiation and
heat back into outer space through the infrared window for cooling during the daytime.
Daytime radiative cooling became possible with the ability to suppress solar heating



using photonic structures, which emerged through a study by Raman et al. (2014).[122]
PDRCs can come in a variety of forms, including paint coatings and films, that are
designed to be high in solar reflectance and thermal emittance.[121][123]

PDRC applications on building roofs and envelopes have demonstrated significant
decreases in energy consumption and costs.[123] In suburban single-family residential
areas, PDRC application on roofs can potentially lower energy costs by 26% to 46%.[
124] PDRCs are predicted to show a market size of ~$27 billion for indoor space cooling
by 2025 and have undergone a surge in research and development since the 2010s.[
125][126]

Fans

[edit]
Main article: Ceiling fan

Hand fans have existed since prehistory. Large human-powered fans built into buildings
include the punkah.

The 2nd-century Chinese inventor Ding Huan of the Han dynasty invented a rotary fan
for air conditioning, with seven wheels 3 m (10 ft) in diameter and manually powered by
prisoners.[127]
:ÃƒÆ’Ã‚Â¢ÃƒÂ¢Ã¢â‚¬Å¡Ã‚Â¬Ãƒâ€¦Ã‚Â 99,ÃƒÆ’Ã‚Â¢ÃƒÂ¢Ã¢â‚¬Å¡Ã‚Â¬Ãƒâ€¦Ã‚Â 151,ÃƒÆ’Ã‚Â¢ÃƒÂ¢Ã¢â‚¬Å¡Ã‚Â¬Ãƒâ€¦Ã‚Â 233ÃƒÆ’Ã‚Â¢ÃƒÂ¢Ã¢â‚¬Å¡Ã‚Â¬Ãƒâ€¦Ã‚Â 
In 747, Emperor Xuanzong (r. 712–762) of the Tang dynasty (618–907) had the Cool
Hall (Liang Dian ÃƒÆ’Ã‚Â¦Ãƒâ€šÃ‚Â¶Ãƒâ€šÃ‚Â¼ÃƒÆ’Ã‚Â¦Ãƒâ€šÃ‚Â®Ãƒâ€šÃ‚Â¿) built
in the imperial palace, which the Tang Yulin describes as having water-powered fan
wheels for air conditioning as well as rising jet streams of water from fountains. During
the subsequent Song dynasty (960–1279), written sources mentioned the air
conditioning rotary fan as even more widely used.[127]
:ÃƒÆ’Ã‚Â¢ÃƒÂ¢Ã¢â‚¬Å¡Ã‚Â¬Ãƒâ€¦Ã‚Â 134,ÃƒÆ’Ã‚Â¢ÃƒÂ¢Ã¢â‚¬Å¡Ã‚Â¬Ãƒâ€¦Ã‚Â 151ÃƒÆ’Ã‚Â¢ÃƒÂ¢Ã¢â‚¬Å¡Ã‚Â¬Ãƒâ€¦Ã‚Â 

Thermal buffering

[edit]

In areas that are cold at night or in winter, heat storage is used. Heat may be stored in
earth or masonry; air is drawn past the masonry to heat or cool it.[13]

In areas that are below freezing at night in winter, snow and ice can be collected and
stored in ice houses for later use in cooling.[13] This technique is over 3,700 years old in
the Middle East.[128] Harvesting outdoor ice during winter and transporting and storing
for use in summer was practiced by wealthy Europeans in the early 1600s,[15] and
became popular in Europe and the Americas towards the end of the 1600s.[129] This



practice was replaced by mechanical compression-cycle icemakers.

Evaporative cooling

[edit]
Main article: Evaporative cooler
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An evaporative cooler

In dry, hot climates, the evaporative cooling effect may be used by placing water at the
air intake, such that the draft draws air over water and then into the house. For this
reason, it is sometimes said that the fountain, in the architecture of hot, arid climates, is
like the fireplace in the architecture of cold climates.[11] Evaporative cooling also makes
the air more humid, which can be beneficial in a dry desert climate.[130]

Evaporative coolers tend to feel as if they are not working during times of high humidity,
when there is not much dry air with which the coolers can work to make the air as cool
as possible for dwelling occupants. Unlike other types of air conditioners, evaporative
coolers rely on the outside air to be channeled through cooler pads that cool the air
before it reaches the inside of a house through its air duct system; this cooled outside air
must be allowed to push the warmer air within the house out through an exhaust
opening such as an open door or window.[131]

See also

[edit]
Air filter
Air purifier
Cleanroom
Crankcase heater
Energy recovery ventilation
Indoor air quality
Particulates
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Heating, ventilation, and air conditioning
 

Fundamental
concepts

Air changes per hour
Bake-out
Building envelope
Convection
Dilution
Domestic energy consumption
Enthalpy
Fluid dynamics
Gas compressor
Heat pump and refrigeration cycle
Heat transfer
Humidity
Infiltration
Latent heat
Noise control
Outgassing
Particulates
Psychrometrics
Sensible heat
Stack effect
Thermal comfort
Thermal destratification
Thermal mass
Thermodynamics
Vapour pressure of water



Technology

Absorption-compression heat pump
Absorption refrigerator
Air barrier
Air conditioning
Antifreeze
Automobile air conditioning
Autonomous building
Building insulation materials
Central heating
Central solar heating
Chilled beam
Chilled water
Constant air volume (CAV)
Coolant
Cross ventilation
Dedicated outdoor air system (DOAS)
Deep water source cooling
Demand controlled ventilation (DCV)
Displacement ventilation
District cooling
District heating
Electric heating
Energy recovery ventilation (ERV)
Firestop
Forced-air
Forced-air gas
Free cooling
Heat recovery ventilation (HRV)
Hybrid heat
Hydronics
Ice storage air conditioning
Kitchen ventilation
Mixed-mode ventilation
Microgeneration
Passive cooling
Passive daytime radiative cooling
Passive house
Passive ventilation
Radiant heating and cooling
Radiant cooling
Radiant heating
Radon mitigation
Refrigeration
Renewable heat
Room air distribution
Solar air heat
Solar combisystem
Solar cooling
Solar heating
Thermal insulation
Thermosiphon
Underfloor air distribution
Underfloor heating
Vapor barrier
Vapor-compression refrigeration (VCRS)
Variable air volume (VAV)
Variable refrigerant flow (VRF)
Ventilation
Water heat recycling



Components

Air conditioner inverter
Air door
Air filter
Air handler
Air ionizer
Air-mixing plenum
Air purifier
Air source heat pump
Attic fan
Automatic balancing valve
Back boiler
Barrier pipe
Blast damper
Boiler
Centrifugal fan
Ceramic heater
Chiller
Condensate pump
Condenser
Condensing boiler
Convection heater
Compressor
Cooling tower
Damper
Dehumidifier
Duct
Economizer
Electrostatic precipitator
Evaporative cooler
Evaporator
Exhaust hood
Expansion tank
Fan
Fan coil unit
Fan filter unit
Fan heater
Fire damper
Fireplace
Fireplace insert
Freeze stat
Flue
Freon
Fume hood
Furnace
Gas compressor
Gas heater
Gasoline heater
Grease duct
Grille
Ground-coupled heat exchanger
Ground source heat pump
Heat exchanger
Heat pipe
Heat pump
Heating film
Heating system
HEPA
High efficiency glandless circulating pump
High-pressure cut-off switch
Humidifier
Infrared heater
Inverter compressor
Kerosene heater
Louver
Mechanical room
Oil heater
Packaged terminal air conditioner
Plenum space
Pressurisation ductwork
Process duct work
Radiator
Radiator reflector
Recuperator
Refrigerant
Register
Reversing valve
Run-around coil
Sail switch
Scroll compressor
Solar chimney
Solar-assisted heat pump
Space heater
Smoke canopy
Smoke damper
Smoke exhaust ductwork
Thermal expansion valve
Thermal wheel
Thermostatic radiator valve
Trickle vent
Trombe wall
TurboSwing
Turning vanes
Ultra-low particulate air (ULPA)
Whole-house fan
Windcatcher
Wood-burning stove
Zone valve



Measurement
and control

Air flow meter
Aquastat
BACnet
Blower door
Building automation
Carbon dioxide sensor
Clean air delivery rate (CADR)
Control valve
Gas detector
Home energy monitor
Humidistat
HVAC control system
Infrared thermometer
Intelligent buildings
LonWorks
Minimum efficiency reporting value (MERV)
Normal temperature and pressure (NTP)
OpenTherm
Programmable communicating thermostat
Programmable thermostat
Psychrometrics
Room temperature
Smart thermostat
Standard temperature and pressure (STP)
Thermographic camera
Thermostat
Thermostatic radiator valve

Professions,
trades,

and services

Architectural acoustics
Architectural engineering
Architectural technologist
Building services engineering
Building information modeling (BIM)
Deep energy retrofit
Duct cleaning
Duct leakage testing
Environmental engineering
Hydronic balancing
Kitchen exhaust cleaning
Mechanical engineering
Mechanical, electrical, and plumbing
Mold growth, assessment, and remediation
Refrigerant reclamation
Testing, adjusting, balancing



Industry
organizations

AHRI
AMCA
ASHRAE
ASTM International
BRE
BSRIA
CIBSE
Institute of Refrigeration
IIR
LEED
SMACNA
UMC

Health and safety

Indoor air quality (IAQ)
Passive smoking
Sick building syndrome (SBS)
Volatile organic compound (VOC)

See also

ASHRAE Handbook
Building science
Fireproofing
Glossary of HVAC terms
Warm Spaces
World Refrigeration Day
Template:Home automation
Template:Solar energy

 
v
t
e

Home appliances
 



Types

Air conditioner
Air fryer
Air ioniser
Air purifier
Barbecue grill
Blender

Immersion blender
Bread machine
Bug zapper
Coffee percolator
Clothes dryer

combo
Clothes iron
Coffeemaker
Dehumidifier
Dishwasher

drying cabinet
Domestic robot

comparison
Deep fryer
Electric blanket
Electric drill
Electric kettle
Electric knife
Electric water boiler
Electric heater
Electric shaver
Electric toothbrush
Epilator
Espresso machine
Evaporative cooler
Food processor
Fan

attic
bladeless
ceiling
Fan heater
window

Freezer
Garbage disposer
Hair dryer
Hair iron
Humidifier
Icemaker
Ice cream maker
Induction cooker
Instant hot water dispenser
Juicer
Kitchen hood
Kitchen stove
Laundry-folding machine
Lawn mower

Riding mower
Robotic lawn mower

Leaf blower
Lighter
Mixer
Oven

Convection oven
Microwave oven

Pie iron
Pressure cooker
Refrigerator

Crisper drawer
smart

Rice cooker
Sewing machine
Slow cooker
Television set
Toaster
Vacuum cleaner

central
manual
robotic

Waffle iron
Water dispenser
Washing machine



See also
Appliance plug
Appliance recycling
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Roofs
 

Roof shapes

Arched roof
Barrel roof
Board roof
Bochka roof
Bow roof
Butterfly roof
Clerestory
Conical roof
Dome
Flat roof
Gable roof
Gablet roof
Gambrel roof
Half-hipped roof
Hip roof
Onion dome
Mansard roof
Pavilion roof
Rhombic roof
Ridged roof
Saddle roof
Sawtooth roof
Shed roof
Tented roof

Cross-gabled roof

Image not found or type unknown



Roof elements

Air conditioning unit
Attic
Catslide
Chimney
Collar beam
Dormer
Eaves
Flashing
Gable
Green roof
Gutter
Hanging beam
Joist
Lightning rod
Loft
Purlin
Rafter
Ridge vent
Roof batten
Roof garden
Roofline
Roof ridge
Roof sheeting
Roof tiles
Roof truss
Roof window
Skylight
Soffit
Solar panels
Spire
Weathervane
Wind brace
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Electronics
 



Branches

Analogue electronics
Digital electronics
Electronic engineering
Instrumentation
Microelectronics
Optoelectronics
Power electronics
Printed electronics
Semiconductor
Schematic capture
Thermal management

Advanced
topics

2020s in computing
Atomtronics
Bioelectronics
List of emerging electronics
Failure of electronic components
Flexible electronics
Low-power electronics
Molecular electronics
Nanoelectronics
Organic electronics
Photonics
Piezotronics
Quantum electronics
Spintronics



Electronic
equipment

Air conditioner
Central heating
Clothes dryer
Computer/Notebook
Camera
Dishwasher
Freezer
Home robot
Home cinema
Home theater PC
Information technology
Cooker
Microwave oven
Mobile phone
Networking hardware
Portable media player
Radio
Refrigerator
Robotic vacuum cleaner
Tablet
Telephone
Television
Water heater
Video game console
Washing machine



Applications

Audio equipment
Automotive electronics
Avionics
Control system
Data acquisition
e-book
e-health
Electromagnetic warfare
Electronics industry
Embedded system
Home appliance
Home automation
Integrated circuit
Home appliance

Consumer electronics
Major appliance
Small appliance

Marine electronics
Microwave technology
Military electronics
Multimedia
Nuclear electronics
Open-source hardware
Radar and Radio navigation
Radio electronics
Terahertz technology
Wired and Wireless Communications
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Germany
Czech Republic

 

About Royal Supply South

Things To Do in Arapahoe County
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https://www.google.com/maps/search/?api=1&query=Four+Mile+Historic+Park&query_place_id=ChIJMQiGfNJ9bIcRSzWPiaFhF0c


Four Mile Historic Park

4.6 (882)

Photo
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Aurora Reservoir

4.6 (1770)

Photo
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Cherry Creek State Park

4.6 (9044)

Photo
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https://www.google.com/maps/search/?api=1&query=Four+Mile+Historic+Park&query_place_id=ChIJMQiGfNJ9bIcRSzWPiaFhF0c
https://www.google.com/maps/search/?api=1&query=Aurora+Reservoir&query_place_id=ChIJs82cjaOMbIcRgLdXMFXvBKM
https://www.google.com/maps/search/?api=1&query=Cherry+Creek+State+Park&query_place_id=ChIJO9N8BMGIbIcR53Jr1zP5s3g
https://www.google.com/maps/search/?api=1&query=Cherry+Creek+Valley+Ecological+Park&query_place_id=ChIJ_VJsUyCPbIcREIJQtgftHCw


Cherry Creek Valley Ecological Park

4.7 (484)

Photo
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Wings Over the Rockies Air & Space Museum

4.7 (5324)
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Plains Conservation Center (Visitor Center)

4.6 (393)

Driving Directions in Arapahoe County

Driving Directions From Mullen High School to Royal Supply South

https://www.google.com/maps/search/?api=1&query=Cherry+Creek+Valley+Ecological+Park&query_place_id=ChIJ_VJsUyCPbIcREIJQtgftHCw
https://www.google.com/maps/search/?api=1&query=Wings+Over+the+Rockies+Air+&+Space+Museum&query_place_id=ChIJ3XERyVl8bIcRRoX_g4U8ZPo
https://www.google.com/maps/search/?api=1&query=Plains+Conservation+Center+(Visitor+Center)&query_place_id=ChIJZcWNXjSKbIcRzJYUXOmYJyY


Driving Directions From Costco Wholesale to Royal Supply South

Driving Directions From Costco Vision Center to Royal Supply South

Driving Directions From Regal River Point to Royal Supply South

Driving Directions From Lowe's Home Improvement to Royal Supply South

Air conditioning repair service

Air conditioning store

Air conditioning system supplier

Furnace repair service

Driving Directions From Cherry Creek State Park to Royal Supply South

Driving Directions From Clock Tower Tours to Royal Supply South

Driving Directions From The Aurora Highlands North Sculpture to Royal Supply South

Driving Directions From Cherry Creek Dam to Royal Supply South

Driving Directions From Plains Conservation Center (Visitor Center) to Royal Supply South

Driving Directions From The Aurora Highlands North Sculpture to Royal Supply South

https://www.google.com/maps/dir/St.+Nicks+Christmas+and+Collectibles/Royal+Supply+South/@39.6225114,-105.0155267,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sChIJ0alPujCAbIcRjcf_zxYfiqw!2m2!1d-105.0155267!2d39.6225114!1m5!1m1!1sChIJ06br1RqAbIcRAjyWXdlXZaw!2m2!1d-105.0233105!2d39.6435918!3e0
https://www.google.com/maps/dir/The+Home+Depot/Royal+Supply+South/@39.6230256,-105.0244932,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sChIJuUU_myWAbIcRHSU8v3hT8ck!2m2!1d-105.0244932!2d39.6230256!1m5!1m1!1sChIJ06br1RqAbIcRAjyWXdlXZaw!2m2!1d-105.0233105!2d39.6435918!3e2
https://www.google.com/maps/dir/Mullen+High+School/Royal+Supply+South/@39.6513096,-105.0362791,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sChIJUXQGSwCAa4cRd9cGgp7C7O4!2m2!1d-105.0362791!2d39.6513096!1m5!1m1!1sChIJ06br1RqAbIcRAjyWXdlXZaw!2m2!1d-105.0233105!2d39.6435918!3e1
https://www.google.com/maps/dir/Arapahoe+County+Assessor/Royal+Supply+South/@39.6197862,-105.013878,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sChIJUZOgQTGAbIcR4RB81GeYMtg!2m2!1d-105.013878!2d39.6197862!1m5!1m1!1sChIJ06br1RqAbIcRAjyWXdlXZaw!2m2!1d-105.0233105!2d39.6435918!3e3


Mobile Home Furnace Installation

Mobile Home Air Conditioning Installation Services

Mobile Home Hvac Repair

Mobile Home Hvac Service

Mobile home supply store

Reviews for Royal Supply South

Assessing Long Term Effects of Poor Air QualityView GBP

Frequently Asked Questions

How does poor air quality impact mobile home HVAC systems over the long term?

Poor air quality can lead to the accumulation of dust, pollutants, and particulates in HVAC
systems, reducing their efficiency and lifespan. Over time, this can cause increased energy
consumption, more frequent repairs, and potentially costly replacements.

What are the health implications for residents living in mobile homes with compromised HVAC systems due to poor air quality?

Residents may experience respiratory issues, allergies, or exacerbated asthma symptoms
due to circulating pollutants. Long-term exposure can increase the risk of chronic health

https://www.google.com/maps/dir/Morrison+Nature+Center/Royal+Supply+South/@39.7537565,-104.8009141,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sunknown!2m2!1d-104.8009141!2d39.7537565!1m5!1m1!1sChIJ06br1RqAbIcRAjyWXdlXZaw!2m2!1d-105.0233105!2d39.6435918!3e0
https://www.google.com/maps/dir/Morrison+Nature+Center/Royal+Supply+South/@39.7537565,-104.8009141,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sunknown!2m2!1d-104.8009141!2d39.7537565!1m5!1m1!1sChIJ06br1RqAbIcRAjyWXdlXZaw!2m2!1d-105.0233105!2d39.6435918!3e2
https://www.google.com/maps/dir/Molly+Brown+House+Museum/Royal+Supply+South/@39.7375016,-104.9808374,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sunknown!2m2!1d-104.9808374!2d39.7375016!1m5!1m1!1sChIJ06br1RqAbIcRAjyWXdlXZaw!2m2!1d-105.0233105!2d39.6435918!3e1
https://www.google.com/maps/dir/Cherry+Creek+Dam/Royal+Supply+South/@39.6513192,-104.8547796,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sunknown!2m2!1d-104.8547796!2d39.6513192!1m5!1m1!1sChIJ06br1RqAbIcRAjyWXdlXZaw!2m2!1d-105.0233105!2d39.6435918!3e3
https://www.google.com/maps/dir/Cherry+Creek+State+Park/Royal+Supply+South/@39.625962,-104.8424778,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sunknown!2m2!1d-104.8424778!2d39.625962!1m5!1m1!1sChIJ06br1RqAbIcRAjyWXdlXZaw!2m2!1d-105.0233105!2d39.6435918!3e0
https://www.google.com/maps/search/?api=1&query=39.6435918,-105.0233105&query_place_id=ChIJ06br1RqAbIcRAjyWXdlXZaw


Royal Supply Inc

Phone : +16362969959

City : Wichita

State : KS

Zip : 67216

Address : Unknown Address

Google Business Profile

Company Website : https://royal-durhamsupply.com/locations/wichita-kansas/

Sitemap

conditions such as cardiovascular diseases.

What measures can be taken to mitigate the effects of poor air quality on mobile home HVAC systems?

Regular maintenance including filter replacement, duct cleaning, and using high-efficiency
particulate air (HEPA) filters can help. Additionally, installing air purifiers and ensuring proper
ventilation will improve indoor air quality.

How does geographical location affect the severity of poor air quality impacts on mobile home HVAC systems?

Areas with higher pollution levels or frequent wildfires pose a greater risk. Coastal regions
might face challenges from humidity leading to mold growth. Understanding local
environmental factors is crucial for effective system maintenance and protection.

https://www.google.com/maps/place/Royal+Supply+Inc/@37.603028,-97.3359394,17z/data=!4m6!3m5!1s0x87bae5c1c584fbd5:0x164226561f776475!8m2!3d37.603028!4d-97.3333645!16s/g/1thw77fk?entry=ttu&g_ep=EgoyMDI0MTIxMS4wIKXMDSoASAFQAw==
https://royal-durhamsupply.com/locations/wichita-kansas/
https://sos-bg-sof-1.exo.io/corp-esg/royalsupplyinc/mobilehomehvac/sitemap.html


Privacy Policy

About Us

Follow us

https://sos-bg-sof-1.exo.io/corp-esg/royalsupplyinc/mobilehomehvac/privacy-policy.html
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