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Understanding particulates and their impact on indoor air quality is vital for creating
healthier living environments. Particulates, often referred to as particulate matter (PM), are
tiny particles suspended in the air, which can include dust, pollen, soot, smoke, and liquid

droplets. These particles vary in size and composition and can significantly affect indoor air
quality when they accumulate within homes or buildings.

Particulate matter is generally classified based on its size: PM10 includes particles with
diameters that are 10 micrometers or smaller, while PM2.5 comprises even finer particles

with diameters of 2.5 micrometers or less. These microscopic particles pose serious health
risks because they can be inhaled deeply into the lungs and even enter the bloodstream.

Exposure to high levels of particulate matter is associated with respiratory issues,
cardiovascular diseases, and other adverse health effects.

Airflow balance is critical for consistent heating and cooling in mobile homes Mobile
Home Hvac Service pump.

One innovative approach to filtering particulates from indoor environments involves
electrostatic options. Electrostatic air filtration technologies use electrically charged plates
or grids to capture airborne particulates effectively. As air passes through these filters, the

particulates become charged by an electric field. The charged particles are then attracted to
oppositely charged collector plates within the filter system.

The advantage of electrostatic filtration lies in its efficiency at capturing a wide range of
particle sizes without imposing significant resistance to airflow-a common drawback in
traditional mechanical filters like HEPA filters. By maintaining lower airflow resistance,

electrostatic filters consume less energy, making them an economical choice for household
or commercial use.

Moreover, electrostatic filters are often reusable after cleaning; periodic washing can restore
their particulate-capturing capability without needing frequent replacements like

conventional filters. This aspect not only makes them cost-effective but also environmentally
friendly by reducing waste.

However, it's important to consider some limitations of electrostatic options for particulate
filtering. They may produce ozone as a byproduct during operation; although usually
minimal, increased ozone levels can have negative health implications if not properly

managed. Additionally, the efficacy of these systems can vary depending on factors such as
humidity levels and specific particle characteristics.
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For optimal performance in improving indoor air quality through electrostatic filtration
systems, regular maintenance is crucial-ensuring that collector plates remain clean and

functional while monitoring any potential ozone emissions.

In conclusion, understanding particulates' impact on indoor air quality highlights the need for
effective filtration solutions like electrostatic options. While offering advantages such as

lower energy consumption and reusability compared to traditional methods, careful
consideration must be given to their operational environment and maintenance

requirements to maximize benefits while minimizing drawbacks related to ozone production
or performance variability under different conditions. Through informed choices about

filtering technologies available today-and how best they align with individual needs-we can
take proactive steps towards fostering healthier indoor spaces where we live work learn

rest-and breathe easy!

Electrostatic filtration technology represents a fascinating and highly effective method for
filtering particulates from air and other gases. This innovative approach leverages the
principles of electrostatics to capture and remove particles, offering a compelling alternative to
traditional filtration methods.

At the heart of electrostatic filtration technology is the use of charged plates or grids that
create an electric field. As particulates in the air pass through this field, they become charged
themselves. Once charged, these particles are attracted to oppositely charged collector
plates, effectively removing them from the airflow. The result is cleaner air, free from a
significant portion of dust, pollen, smoke, and other airborne contaminants.

One of the key advantages of electrostatic filters is their efficiency in capturing very small
particles that can be challenging for conventional mechanical filters to trap. While traditional
filters rely on physical barriers with pores small enough to catch particulates, electrostatic
filters use electrical attraction, which can work on even sub-micron sized particles. This makes
them particularly useful in environments where high air quality is essential, such as hospitals
or laboratories.

Moreover, electrostatic filters are often more sustainable than their mechanical counterparts
because they do not require disposable filter media that need regular replacement. Instead,
the collector plates in an electrostatic system can be reused after cleaning, reducing waste
and ongoing maintenance costs.



However, there are some considerations to keep in mind when using electrostatic filtration
systems. For instance, their performance can be influenced by factors such as humidity and
particle composition. Additionally, while these systems are generally quiet during operation
compared to some mechanical fans or blowers used with other types of filters, they may
generate ozone-a byproduct that requires careful management due to health concerns
associated with prolonged exposure.

In conclusion, electrostatic filtration technology offers an efficient and environmentally friendly
option for particulate removal across various applications. Its ability to capture extremely fine
particles without generating excessive waste positions it as a valuable tool in advancing clean
air solutions. As we continue exploring innovative ways to improve air quality amidst growing
environmental challenges, technologies like electrostatic filtration provide promising pathways
forward.
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Types of Measurements
Required in Mobile Home
HVAC Checks

Electrostatic filters have emerged as an innovative solution for enhancing air quality in mobile
home HVAC systems. As concerns about indoor air pollution continue to rise, these filters
offer a compelling option for homeowners seeking to filter particulates effectively and
efficiently. This essay explores the benefits of using electrostatic filters in mobile home
environments, highlighting their advantages over traditional filtration methods.

One of the primary benefits of electrostatic filters is their ability to capture a wide range of
airborne particles with remarkable efficiency. Unlike conventional filters that merely trap
particles mechanically, electrostatic filters utilize an electric charge to attract and hold
pollutants such as dust, pollen, smoke, and even some bacteria and viruses. This process not
only improves indoor air quality but also ensures that the HVAC system operates more
smoothly by preventing particle buildup on components like fans and coils.

Furthermore, electrostatic filters are known for their reusability and cost-effectiveness. While
standard disposable filters require frequent replacement-adding up in costs over time-
electrostatic options can be easily washed and reused multiple times before needing
replacement. This feature makes them an environmentally friendly choice by reducing waste
and lowering long-term expenses for mobile home owners.

Another significant advantage is their minimal impact on airflow resistance within the HVAC
system. Electrostatic filters are designed to maintain optimal airflow while filtering out
contaminants effectively. This balance prevents strain on HVAC systems, promoting energy
efficiency and potentially extending the lifespan of heating and cooling equipment-a crucial
consideration for mobile homes where space constraints often demand efficient operation.



In addition to mechanical advantages, electrostatic filters contribute positively to health
outcomes by reducing allergens and irritants in the air. For individuals with allergies or
respiratory conditions, a cleaner indoor environment can lead to fewer health issues and
improved overall well-being. Given that mobile homes often house families with varying health
needs, installing an effective filtration system becomes not just a matter of comfort but also
one of necessity.

Moreover, many modern electrostatic filter models come equipped with additional
enhancements such as activated carbon layers or antimicrobial coatings. These features
further boost their capability to neutralize odors or inhibit microbial growth, thus contributing to
a fresher living environment-a particularly appealing attribute for mobile homes where
proximity often heightens the sensitivity to smells.

In conclusion, incorporating electrostatic filters into mobile home HVAC systems presents
numerous benefits that extend beyond basic particulate filtration. Their superior ability to
capture diverse pollutants efficiently while maintaining optimal airflow makes them a highly
desirable option for those seeking cleaner indoor air without compromising system
performance or budget constraints. As awareness regarding air quality continues to grow,
embracing advanced technologies like electrostatic filtration becomes increasingly vital in
ensuring healthier living spaces today and in the future.





Comparing Digital vs Analog
Multimeters for HVAC Use

When discussing the installation of electrostatic filters in mobile homes, it's essential to
consider the unique challenges and benefits associated with these living environments. Mobile
homes, often characterized by their compact design and efficient use of space, present
particular considerations when it comes to air quality management. Electrostatic filters offer an



innovative solution for filtering particulates, but their effectiveness hinges on thoughtful
installation and maintenance.

Firstly, understanding the spatial constraints of a mobile home is crucial. Unlike traditional
houses, where HVAC systems can be expansive and accommodate various types of filtration
devices, mobile homes have limited space for such installations. Therefore, selecting an
appropriately sized electrostatic filter is paramount. These filters work by using charged plates
to attract and capture airborne particles such as dust, pollen, and smoke. However, if the filter
is too large or improperly fitted within the existing ductwork or ventilation system, it may
obstruct airflow or reduce efficiency.

Moreover, the installation process must account for the electrical requirements of electrostatic
filters. These devices need a power source to maintain their charge and operate effectively.
Ensuring that the mobile home's electrical system can support this additional load without
causing overloads or requiring significant rewiring is another critical consideration.

Another important factor is accessibility for maintenance. Electrostatic filters require regular
cleaning to maintain their efficiency in capturing particulates. In a mobile home setting, ease of
access becomes even more significant due to spatial limitations that might complicate routine
upkeep tasks. Installations should prioritize user-friendly designs that allow residents to easily
remove and clean the filter plates.

Furthermore, climate considerations play a role in choosing electrostatic options for mobile
homes. Depending on whether the home is situated in a humid or dry climate can influence
how well these filters function over time; humidity can affect particle adhesion on charged
plates while excessive dryness might lead to static discharge issues.

Finally, cost-effectiveness cannot be ignored when considering upgrades in air filtration
systems within mobile homes. While electrostatic filters are often more expensive upfront
compared to traditional ones like fiberglass or pleated options, they typically offer long-term
savings due to their washable nature and extended lifespan.

In conclusion, installing electrostatic filters in mobile homes involves navigating several
specific considerations including size constraints, electrical capacity, ease of maintenance
accessibilities as well as local environmental factors which all influence performance efficacy
over time-making informed decisions about these variables ensures optimal air quality
improvement suited specifically towards enhancing living conditions within compact housing



scenarios commonly found across communities today!

Safety Considerations When
Using Multimeters in Mobile
Homes

Electrostatic filters have emerged as a vital component in the domain of air filtration,
leveraging the power of charged particles to effectively capture and remove airborne
pollutants. Their efficiency in filtering particulates through electrostatic options makes them an
indispensable tool in various industries, from residential air purification systems to large-scale
industrial applications. However, to ensure these filters perform optimally, regular
maintenance is crucial.

At the heart of electrostatic filtration lies the principle of ionization. Particles passing through
the filter are charged and subsequently attracted to oppositely charged plates or fibers. Over
time, these surfaces accumulate particulate matter which can diminish the filter's effectiveness
if not regularly cleaned. One primary maintenance requirement is routine inspection and
cleaning of these components. Depending on the environment and usage intensity, this may
need to occur monthly or quarterly. For example, environments with higher pollution levels
require more frequent attention.

A significant aspect of maintaining electrostatic filters is ensuring that all electrical components
remain intact and functional. The ionization process relies heavily on stable voltage supply;
any fluctuation or failure in this supply can drastically reduce filter efficiency. Therefore,
checking for loose connections or damaged wires should be part of regular maintenance
protocols. Additionally, attention should be given to voltage settings; incorrect settings can
either underperform or overburden the system.



Another critical maintenance requirement involves monitoring airflow resistance within the
system. As particulates accumulate on collecting plates, they may hinder airflow if not
addressed promptly. This resistance can lead to increased energy consumption as systems
work harder to maintain desired performance levels. Regular cleaning helps mitigate this issue
by ensuring unobstructed air passage.

Moreover, replacing worn-out parts like collecting plates or pre-filters at appropriate intervals is
essential for sustaining optimal performance levels over time. Pre-filters play a crucial role by
trapping larger particles before they reach the main electrostatic unit; neglecting their upkeep
can lead to premature wear on more sensitive components.

In addition to physical maintenance tasks, operators should also consider environmental
factors that could affect filter performance-such as humidity levels which might impact
electrical charge efficiency-and adjust operating conditions accordingly.

Ultimately, while electrostatic filters offer superior particulate removal capabilities thanks to
their innovative use of electricity and physics principles combined with minimal manual
intervention needed during operation phases themselves compared against conventional
counterparts like HEPA-based systems etc., they still demand consistent care when it comes
down towards preventative measures taken beforehand rather than reactive ones later after
potential damage has already occurred due negligence shown earlier thus preserving
longevity alongside cost-effectiveness long-term basis alike!



Recommended Brands and
Models for HVAC Multimeters



In recent years, the quest for cleaner air has become an imperative part of both residential
and industrial environments. Among the myriad solutions available, electrostatic filters have
emerged as a compelling option for filtering particulates. To understand why they stand out,
it's essential to compare them with other prevalent filtration technologies such as HEPA filters,
activated carbon filters, and UV light filters.

Electrostatic filters operate on a simple yet effective principle. They use static electricity to
capture airborne particles like dust, pollen, and smoke. As air passes through these filters,
particles receive an electrical charge that makes them adhere to oppositely charged metal
plates within the filter. This method is not only efficient in capturing particulates but also boasts
a long lifespan since the plates can be washed and reused-an economic advantage over
disposable alternatives.

In contrast, High-Efficiency Particulate Air (HEPA) filters are well-known for their ability to trap
at least 99.97% of particles that are 0.3 microns or larger in diameter. While HEPA filters excel
in environments where extremely high levels of filtration are required-such as hospitals-they
do come with trade-offs. The dense material used in HEPA filters can hinder airflow if not
properly maintained or replaced regularly, which can lead to increased energy consumption by
HVAC systems.

Activated carbon filters offer another avenue for air purification by adsorbing gases and odors
along with particulates. These are particularly useful in settings where volatile organic
compounds (VOCs) need to be minimized; however, they may not be as effective at capturing
fine particles compared to electrostatic or HEPA options.

Additionally, ultraviolet (UV) light filtration is often employed alongside other filtration methods
rather than as a standalone solution. UV light effectively neutralizes microorganisms such as
bacteria and viruses but does little against non-living particulates like dust or pollen.

The choice between these options largely depends on specific needs and priorities-whether
it's maximizing particle removal efficiency or reducing operational costs and maintenance
efforts. Electrostatic filters strike an appealing balance by offering decent particulate removal
efficiency while being cost-effective over time due to their reusable nature.

However, it's important to note that no single type of filter provides a one-size-fits-all solution
for every scenario. In many cases, combining different types of filtration technologies yields



the best results by addressing multiple facets of air quality concurrently.

Ultimately, understanding one's unique environmental requirements is crucial when selecting
an appropriate air filtration system. Whether opting for electrostatic technology or exploring
other available options like HEPA or activated carbon solutions-or even integrating multiple
systems-the overarching goal remains clear: achieving cleaner air for healthier living spaces
and workplaces.

About Manufactured housing
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A modern "triple wide" home

Manufactured housing (commonly known as mobile homes in the United States) is a
type of prefabricated housing that is largely assembled in factories and then transported
to sites of use. The definition of the term in the United States is regulated by federal law
(Code of Federal Regulations, 24 CFR 3280): "Manufactured homes are built as
dwelling units of at least 320 square feet (30 m2) in size with a permanent chassis to
assure the initial and continued transportability of the home."[1] The requirement to
have a wheeled chassis permanently attached differentiates "manufactured housing"
from other types of prefabricated homes, such as modular homes.

United States

[edit]



Definition

[edit]

According to the Manufactured Housing Institute's National Communities Council
(MHINCC), manufactured homes[2]

are homes built entirely in the factory under a federal building code
administered by the U.S. Department of Housing and Urban Development
(HUD). The Federal Manufactured Home Construction and Safety Standards
(commonly known as the HUD Code) went into effect June 15, 1976.
Manufactured homes may be single- or multi-section and are transported to
the site and installed.

The MHINCC distinguishes among several types of factory-built housing: manufactured
homes, modular homes, panelized homes, pre-cut homes, and mobile homes.

From the same source, mobile home "is the term used for manufactured homes
produced prior to June 15, 1976, when the HUD Code went into effect."[2] Despite the
formal definition, mobile home and trailer are still common terms in the United States for
this type of housing.

History

[edit]

The original focus of this form of housing was its ability to relocate easily. Units were
initially marketed primarily to people whose lifestyle required mobility. However,
beginning in the 1950s, these homes began to be marketed primarily as an inexpensive
form of housing designed to be set up and left in a location for long periods of time, or
even permanently installed with a masonry foundation. Previously, units had been eight
feet or less in width, but in 1956, the 10-foot (3.0 m) wide home was introduced. This
helped solidify the line between mobile and house/travel trailers, since the smaller units
could be moved simply with an automobile, but the larger, wider units required the
services of a professional trucking company. In the 1960s and '70s, the homes became
even longer and wider, making the mobility of the units more difficult. Today, when a
factory-built home is moved to a location, it is usually kept there permanently. The
mobility of the units has decreased considerably.



The factory-built homes of the past developed a negative stereotype because of their
lower cost and the tendency for their value to depreciate more quickly than site-built
homes. The tendency of these homes to rapidly depreciate in resale value made using
them as collateral for loans far riskier than traditional home loans. Loan terms were
usually limited to less than the 30-year term typical of the general home-loan market,
and interest rates were considerably higher. In other words, these home loans
resembled motor vehicle loans far more than traditional home mortgages. They have
been consistently linked to lower-income families, which has led to prejudice and zoning
restrictions, which include limitations on the number and density of homes permitted on
any given site, minimum size requirements, limitations on exterior colors and finishes,
and foundation mandates.

Many jurisdictions do not allow the placement of any additional factory-built homes,
while others have strongly limited or forbidden all single-wide models, which tend to
depreciate more rapidly than modern double-wide models. The derogatory concept of a
"trailer park" is typically older single-wide homes occupying small, rented lots and
remaining on wheels, even if the home stays in place for decades.

Modern manufactured homes

[edit]
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A manufactured house ready to be assembled in Grass Valley, California

Modern homes, especially modular homes, belie this image and can be identical in
appearance to site-built homes. Newer homes, particularly double-wides, tend to be
built to much higher standards than their predecessors. This has led to a reduction in
the rate of value depreciation of many used units.
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A manufactured house just before construction of its garage
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Stick built garage being added to a new manufactured house

Although great strides have been made in terms of quality, manufactured homes do still
struggle with construction problems. Author Wes Johnson has pointed out that the HUD
code which governs manufactured homes desperately needs to be updated, quality
control at manufacturing facilities are often lax, and set-up issues often compromise
even a well-made manufactured home. Johnson states buyers need to be exceptionally
cautious if they are entertaining the idea of purchasing any manufactured home by
carefully checking it for defects before signing the contract and supervising the set-up
process closely. These homes in the modern age are built to be beautiful and last
longer than the typical old trailers.[citation needed]

When FEMA studied the destruction wrought by Hurricane Andrew in Dade County
Florida, they concluded that modular and masonry homes fared best compared to other
construction.[3]

High-performance manufactured housing

[edit]

While manufactured homes are considered to be affordable housing, older models can
be some of the most expensive in the nation to heat due to energy inefficiency.[4] High-
performance manufactured housing uses less energy and therefore increases life-cycle
affordability by decreasing operating costs. High-performance housing is not only
energy efficient, but also attractive, functional, water-efficient, resilient to wind, seismic
forces, and moisture penetration, and has healthy indoor environmental quality.
Achieving high-performance involves integrated, whole building design, involving many



components, not one single technology. High–performance manufactured housing
should also include energy efficient appliances, such as Energy Star qualified
appliances.[4] Energy Star requires ample insulation: 2x6 walls: R21, roof: R40, floor:
R33.

Difference from modular homes

[edit]

Both types of homes - manufactured and modular - are commonly referred to as
factory-built housing, but they are not identical. Modular homes are built to International
Residential Code (IRC) code. Modular homes can be transported on flatbed trucks
rather than being towed, and can lack axles and an automotive-type frame. However,
some modular houses are towed behind a semi-truck or toter on a frame similar to that
of a trailer. The house is usually in two pieces and is hauled by two separate trucks.
Each frame has five or more axles, depending on the size of the house. Once the
house has reached its location, the axles and the tongue of the frame are then
removed, and the house is set on a concrete foundation by a large crane. Some
modern modular homes, once fully assembled, are indistinguishable from site-built
homes. In addition, modular homes:

must conform to the same local, state and regional building codes as homes built
on-site;
are treated the same by banks as homes built on-site. They are easily refinanced,
for example;
must be structurally approved by inspectors;
can be of any size, although the block sections from which they are assembled are
uniformly sized;[5][6]

Difference from IRC codes homes (site built)

[edit]

Manufactured homes have several standard requirements that are more stringent than
International Residential Code homes.

Fire Protection

A National Fire Protection Association (NFPA) study from July 2011 shows that
occurrence of fires is lower in manufactured housing and the injury rate is lower in



manufactured housing. The justification behind the superior fire safety is due to the
following higher standard requirements:

The HUD standard requires a flame spread of 25 or less in water heater and
furnace compartments.
The HUD standard requires a flame spread of 50 or less on the wall behind the
range.
The HUD standard requires a flame spread of 75 or less on the ceilings.
The HUD standard requires a flame spread of 25 or less to protect the bottoms
and side of kitchen cabinets around the range.
The HUD standard requires additional protection of cabinets above the range.
The HUD standard requires trim larger than 6" to meet flame spread requirements.
The HUD standard requires smoke detectors in the general living area.
The HUD standard requires 2 exterior doors.
The HUD standard requires bedroom doors to be within 35 feet of an exterior
door.

Bay Area

[edit]

The San Francisco Bay Area, located in Northern California, is known for its high real
estate prices, making manufactured housing an increasingly popular alternative to
traditional real estate.[7] It is mainly the value of the land that makes real estate in this
area so expensive. As of May 2011, the median price of a home in Santa Clara was
$498,000,[8] while the most expensive manufactured home with all the premium
features was only $249,000.[9] This drastic price difference is due to the fact that
manufactured homes are typically placed in communities where individuals do not own
the land, but instead pay a monthly site fee. This enables a consumer, who could
otherwise not afford to live in the Bay Area, the opportunity to own a new home in this
location. There are various communities of manufactured homes in the Bay Area, the
largest being Casa de Amigos, located in Sunnyvale, California.

Bulk material storage
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Bulk material storage



Construction starts with the frame

Image not found or type unknown

Construction starts with
the frame
Interior wall assemblies are attached
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Interior wall assemblies
are attached
Exterior wall assemblies are set in place
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Exterior wall
assemblies are set in
place
Roof assembly is set atop the house
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Roof assembly is set
atop the house
Drywall completed
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Drywall completed
House is ready for delivery to site
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House is ready for
delivery to site

Australia

[edit]
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An Australian modern prefabricated house

In Australia these homes are commonly known as transportable homes, relocatable
homes or prefabricated homes (not to be confused with the American meaning of the
term). They are not as common as in the US, but the industry is expected to grow as
this method of construction becomes more accepted.

Manufactured home parks refer to housing estates where the house owner rents the
land instead of owning it. This is quite common in Queensland in both the form of tourist
parks and over fifty estates. The term transportable homes tends to be used to refer to
houses that are built on land that is owned by the house owner.[citation needed]

Typically the homes are built in regional areas where the cost of organizing
tradespeople and materials is higher than in the cities. In particular prefabricated homes
have been popular in mining towns or other towns experiencing demand for new
housing in excess of what can be handled by local builders. This method of construction
is governed by state construction legislation and is subject to local council approval and
homeowners' warranty or home warranty insurance.

Construction process

[edit]

A manufactured home is built entirely inside a huge, climate-controlled factory by a
team of craftsmen. The first step in the process is the flooring, which is built in sections,
each attached to a permanent chassis with its own wheels and secured for transport
upon the home's completion. Depending on the size of the house and the floorplan's
layout, there may be two, three or even four sections. The flooring sections have
heating, electrical and plumbing connections pre-installed before they are finished with
laminate, tile or hardwood. Next, the walls are constructed on a flat level surface with
insulation and interior Sheetrock before being lifted by crane into position and secured



to the floor sections. The interior ceilings and roof struts are next, vapor sealed and
secured to each section's wall frame before being shingled. Then, the exterior siding is
added, along with the installation of doors and windows. Finally, interior finishing, such
as sealing the drywall, is completed, along with fixture installation and finishing the
electrical and plumbing connections. The exposed portions of each section, where they
will eventually be joined together, are wrapped in plastic to protect them for transport.

With all the building site prep work completed, the building will be delivered by trucks
towing the individual sections on their permanent chassis. The sections will be joined
together securely, and all final plumbing and electrical connections are made before a
decorative skirt or facade is applied to the bottom exterior of the house, hiding the
chassis and finishing off the look of the home.

See also

[edit]
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Housing portal
Modular home
Prefabrication
Prefabricated home
Reefer container housing units
British post-war temporary prefab houses
HUD USER
Regulatory Barriers Clearinghouse
Lustron house
Cardinal Industries, Inc.
Dymaxion house
Excel Homes
All American Homes
All Parks Alliance for Change
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Wikimedia Commons has media related to Manufactured homes.

About Ventilation (architecture)
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An ab anbar (water reservoir) with double domes and windcatchers
(openings near the top of the towers) in the central desert city of Naeen, Iran.
Windcatchers are a form of natural ventilation.[1]

Ventilation is the intentional introduction of outdoor air into a space. Ventilation is
mainly used to control indoor air quality by diluting and displacing indoor pollutants; it
can also be used to control indoor temperature, humidity, and air motion to benefit
thermal comfort, satisfaction with other aspects of the indoor environment, or other
objectives.

The intentional introduction of outdoor air is usually categorized as either mechanical
ventilation, natural ventilation, or mixed-mode ventilation.[2]

Mechanical ventilation is the intentional fan-driven flow of outdoor air into and/or
out from a building. Mechanical ventilation systems may include supply fans
(which push outdoor air into a building), exhaust[3] fans (which draw air out of a



building and thereby cause equal ventilation flow into a building), or a combination
of both (called balanced ventilation if it neither pressurizes nor depressurizes the
inside air,[3] or only slightly depressurizes it). Mechanical ventilation is often
provided by equipment that is also used to heat and cool a space.
Natural ventilation is the intentional passive flow of outdoor air into a building
through planned openings (such as louvers, doors, and windows). Natural
ventilation does not require mechanical systems to move outdoor air. Instead, it
relies entirely on passive physical phenomena, such as wind pressure, or the
stack effect. Natural ventilation openings may be fixed, or adjustable. Adjustable
openings may be controlled automatically (automated), owned by occupants
(operable), or a combination of both. Cross ventilation is a phenomenon of natural
ventilation.
Mixed-mode ventilation systems use both mechanical and natural processes. The
mechanical and natural components may be used at the same time, at different
times of day, or in different seasons of the year.[4] Since natural ventilation flow
depends on environmental conditions, it may not always provide an appropriate
amount of ventilation. In this case, mechanical systems may be used to
supplement or regulate the naturally driven flow.

Ventilation is typically described as separate from infiltration.

Infiltration is the circumstantial flow of air from outdoors to indoors through leaks
(unplanned openings) in a building envelope. When a building design relies on
infiltration to maintain indoor air quality, this flow has been referred to as
adventitious ventilation.[5]

The design of buildings that promote occupant health and well-being requires a clear
understanding of the ways that ventilation airflow interacts with, dilutes, displaces, or
introduces pollutants within the occupied space. Although ventilation is an integral
component of maintaining good indoor air quality, it may not be satisfactory alone.[6] A
clear understanding of both indoor and outdoor air quality parameters is needed to
improve the performance of ventilation in terms of occupant health and energy.[7] In
scenarios where outdoor pollution would deteriorate indoor air quality, other treatment
devices such as filtration may also be necessary.[8] In kitchen ventilation systems, or
for laboratory fume hoods, the design of effective effluent capture can be more
important than the bulk amount of ventilation in a space. More generally, the way that
an air distribution system causes ventilation to flow into and out of a space impacts the
ability of a particular ventilation rate to remove internally generated pollutants. The
ability of a system to reduce pollution in space is described as its "ventilation
effectiveness". However, the overall impacts of ventilation on indoor air quality can
depend on more complex factors such as the sources of pollution, and the ways that
activities and airflow interact to affect occupant exposure.



An array of factors related to the design and operation of ventilation systems are
regulated by various codes and standards. Standards dealing with the design and
operation of ventilation systems to achieve acceptable indoor air quality include the
American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)
Standards 62.1 and 62.2, the International Residential Code, the International
Mechanical Code, and the United Kingdom Building Regulations Part F. Other
standards that focus on energy conservation also impact the design and operation of
ventilation systems, including ASHRAE Standard 90.1, and the International Energy
Conservation Code.

When indoor and outdoor conditions are favorable, increasing ventilation beyond the
minimum required for indoor air quality can significantly improve both indoor air quality
and thermal comfort through ventilative cooling, which also helps reduce the energy
demand of buildings.[9][10] During these times, higher ventilation rates, achieved
through passive or mechanical means (air-side economizer, ventilative pre-cooling),
can be particularly beneficial for enhancing people's physical health.[11] Conversely,
when conditions are less favorable, maintaining or improving indoor air quality through
ventilation may require increased use of mechanical heating or cooling, leading to
higher energy consumption.

Ventilation should be considered for its relationship to "venting" for appliances and
combustion equipment such as water heaters, furnaces, boilers, and wood stoves. Most
importantly, building ventilation design must be careful to avoid the backdraft of
combustion products from "naturally vented" appliances into the occupied space. This
issue is of greater importance for buildings with more air-tight envelopes. To avoid the
hazard, many modern combustion appliances utilize "direct venting" which draws
combustion air directly from outdoors, instead of from the indoor environment.

Design of air flow in rooms

[edit]

The air in a room can be supplied and removed in several ways, for example via ceiling
ventilation, cross ventilation, floor ventilation or displacement ventilation.[citation needed]

Ceiling ventilation
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Ceiling ventilation



Cross ventilation
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Cross ventilation
Floor ventilation
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Floor ventilation
Displacement ventilation
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Displacement
ventilation

Furthermore, the air can be circulated in the room using vortexes which can be initiated
in various ways:

Tangential flow vortices, initiated horizontally
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Tangential flow
vortices, initiated
horizontally



Tangential flow vortices, initiated vertically
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Tangential flow
vortices, initiated
vertically
Diffused flow vortices from air nozzles
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Diffused flow
vortices from air
nozzles
Diffused flow vortices due to roof vortices
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Diffused flow
vortices due to roof
vortices

Ventilation rates for indoor air quality

[edit]

Globe icon.
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The examples and perspective in this article deal primarily with the United
States and do not represent a worldwide view of the subject. You may
improve this article, discuss the issue on the talk page, or create a new article,
as appropriate. (April 2024) (Learn how and when to remove this message)

The ventilation rate, for commercial, industrial, and institutional (CII) buildings, is
normally expressed by the volumetric flow rate of outdoor air, introduced to the building.
The typical units used are cubic feet per minute (CFM) in the imperial system, or liters
per second (L/s) in the metric system (even though cubic meter per second is the



preferred unit for volumetric flow rate in the SI system of units). The ventilation rate can
also be expressed on a per person or per unit floor area basis, such as CFM/p or
CFM/ft², or as air changes per hour (ACH).

Standards for residential buildings

[edit]

For residential buildings, which mostly rely on infiltration for meeting their ventilation
needs, a common ventilation rate measure is the air change rate (or air changes per
hour): the hourly ventilation rate divided by the volume of the space (I or ACH; units of
1/h). During the winter, ACH may range from 0.50 to 0.41 in a tightly air-sealed house
to 1.11 to 1.47 in a loosely air-sealed house.[12]

ASHRAE now recommends ventilation rates dependent upon floor area, as a revision to
the 62-2001 standard, in which the minimum ACH was 0.35, but no less than 15
CFM/person (7.1 L/s/person). As of 2003, the standard has been changed to 3
CFM/100 sq. ft. (15 L/s/100 sq. m.) plus 7.5 CFM/person (3.5 L/s/person).[13]

Standards for commercial buildings

[edit]

Ventilation rate procedure

[edit]

Ventilation Rate Procedure is rate based on standard and prescribes the rate at which
ventilation air must be delivered to space and various means to the condition that air.[
14] Air quality is assessed (through CO2 measurement) and ventilation rates are
mathematically derived using constants. Indoor Air Quality Procedure uses one or more
guidelines for the specification of acceptable concentrations of certain contaminants in
indoor air but does not prescribe ventilation rates or air treatment methods.[14] This
addresses both quantitative and subjective evaluations and is based on the Ventilation
Rate Procedure. It also accounts for potential contaminants that may have no
measured limits, or for which no limits are not set (such as formaldehyde off-gassing
from carpet and furniture).



Natural ventilation

[edit]
Main article: Natural ventilation

Natural ventilation harnesses naturally available forces to supply and remove air in an
enclosed space. Poor ventilation in rooms is identified to significantly increase the
localized moldy smell in specific places of the room including room corners.[11] There
are three types of natural ventilation occurring in buildings: wind-driven ventilation,
pressure-driven flows, and stack ventilation.[15] The pressures generated by 'the stack
effect' rely upon the buoyancy of heated or rising air. Wind-driven ventilation relies upon
the force of the prevailing wind to pull and push air through the enclosed space as well
as through breaches in the building's envelope.

Almost all historic buildings were ventilated naturally.[16] The technique was generally
abandoned in larger US buildings during the late 20th century as the use of air
conditioning became more widespread. However, with the advent of advanced Building
Performance Simulation (BPS) software, improved Building Automation Systems (BAS),
Leadership in Energy and Environmental Design (LEED) design requirements, and
improved window manufacturing techniques; natural ventilation has made a resurgence
in commercial buildings both globally and throughout the US.[17]

The benefits of natural ventilation include:

Improved indoor air quality (IAQ)
Energy savings
Reduction of greenhouse gas emissions
Occupant control
Reduction in occupant illness associated with sick building syndrome
Increased worker productivity

Techniques and architectural features used to ventilate buildings and structures
naturally include, but are not limited to:

Operable windows
Clerestory windows and vented skylights
Lev/convection doors
Night purge ventilation
Building orientation
Wind capture façades

Airborne diseases

[edit]



Natural ventilation is a key factor in reducing the spread of airborne illnesses such as
tuberculosis, the common cold, influenza, meningitis or COVID-19.[18] Opening doors
and windows are good ways to maximize natural ventilation, which would make the risk
of airborne contagion much lower than with costly and maintenance-requiring
mechanical systems. Old-fashioned clinical areas with high ceilings and large windows
provide the greatest protection. Natural ventilation costs little and is maintenance-free,
and is particularly suited to limited-resource settings and tropical climates, where the
burden of TB and institutional TB transmission is highest. In settings where respiratory
isolation is difficult and climate permits, windows and doors should be opened to reduce
the risk of airborne contagion. Natural ventilation requires little maintenance and is
inexpensive.[19]

Natural ventilation is not practical in much of the infrastructure because of climate. This
means that the facilities need to have effective mechanical ventilation systems and or
use Ceiling Level UV or FAR UV ventilation systems.

Ventilation is measured in terms of air changes per hour (ACH). As of 2023, the CDC
recommends that all spaces have a minimum of 5 ACH.[20] For hospital rooms with
airborne contagions the CDC recommends a minimum of 12 ACH.[21] Challenges in
facility ventilation are public unawareness,[22][23] ineffective government oversight,
poor building codes that are based on comfort levels, poor system operations, poor
maintenance, and lack of transparency.[24]

Pressure, both political and economic, to improve energy conservation has led to
decreased ventilation rates. Heating, ventilation, and air conditioning rates have
dropped since the energy crisis in the 1970s and the banning of cigarette smoke in the
1980s and 1990s.[25][26][better source needed]

Mechanical ventilation

[edit]
Main article: HVAC
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An axial belt-drive exhaust fan serving an underground car park. This
exhaust fan's operation is interlocked with the concentration of contaminants
emitted by internal combustion engines.

Mechanical ventilation of buildings and structures can be achieved by the use of the
following techniques:

Whole-house ventilation
Mixing ventilation
Displacement ventilation
Dedicated subaerial air supply

Demand-controlled ventilation (DCV)

[edit]

Demand-controlled ventilation (DCV, also known as Demand Control Ventilation)
makes it possible to maintain air quality while conserving energy.[27][28] ASHRAE has
determined that "It is consistent with the ventilation rate procedure that demand control
be permitted for use to reduce the total outdoor air supply during periods of less
occupancy."[29] In a DCV system, CO2 sensors control the amount of ventilation.[30][
31] During peak occupancy, CO2 levels rise, and the system adjusts to deliver the
same amount of outdoor air as would be used by the ventilation-rate procedure.[32]
However, when spaces are less occupied, CO2 levels reduce, and the system reduces
ventilation to conserves energy. DCV is a well-established practice,[33] and is required
in high occupancy spaces by building energy standards such as ASHRAE 90.1.[34]



Personalized ventilation

[edit]
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Personalized ventilation is an air distribution strategy that allows individuals to control
the amount of ventilation received. The approach delivers fresh air more directly to the
breathing zone and aims to improve the air quality of inhaled air. Personalized
ventilation provides much higher ventilation effectiveness than conventional mixing
ventilation systems by displacing pollution from the breathing zone with far less air
volume. Beyond improved air quality benefits, the strategy can also improve occupants'
thermal comfort, perceived air quality, and overall satisfaction with the indoor
environment. Individuals' preferences for temperature and air movement are not equal,
and so traditional approaches to homogeneous environmental control have failed to
achieve high occupant satisfaction. Techniques such as personalized ventilation
facilitate control of a more diverse thermal environment that can improve thermal
satisfaction for most occupants.

Local exhaust ventilation

[edit]
See also: Power tool

Local exhaust ventilation addresses the issue of avoiding the contamination of indoor
air by specific high-emission sources by capturing airborne contaminants before they
are spread into the environment. This can include water vapor control, lavatory effluent
control, solvent vapors from industrial processes, and dust from wood- and metal-
working machinery. Air can be exhausted through pressurized hoods or the use of fans
and pressurizing a specific area.[35]
A local exhaust system is composed of five basic parts:

1. A hood that captures the contaminant at its source
2. Ducts for transporting the air
3. An air-cleaning device that removes/minimizes the contaminant
4. A fan that moves the air through the system
5. An exhaust stack through which the contaminated air is discharged[35]



In the UK, the use of LEV systems has regulations set out by the Health and Safety
Executive (HSE) which are referred to as the Control of Substances Hazardous to
Health (CoSHH). Under CoSHH, legislation is set to protect users of LEV systems by
ensuring that all equipment is tested at least every fourteen months to ensure the LEV
systems are performing adequately. All parts of the system must be visually inspected
and thoroughly tested and where any parts are found to be defective, the inspector
must issue a red label to identify the defective part and the issue.

The owner of the LEV system must then have the defective parts repaired or replaced
before the system can be used.

Smart ventilation

[edit]

Smart ventilation is a process of continually adjusting the ventilation system in time, and
optionally by location, to provide the desired IAQ benefits while minimizing energy
consumption, utility bills, and other non-IAQ costs (such as thermal discomfort or
noise). A smart ventilation system adjusts ventilation rates in time or by location in a
building to be responsive to one or more of the following: occupancy, outdoor thermal
and air quality conditions, electricity grid needs, direct sensing of contaminants,
operation of other air moving and air cleaning systems. In addition, smart ventilation
systems can provide information to building owners, occupants, and managers on
operational energy consumption and indoor air quality as well as a signal when systems
need maintenance or repair. Being responsive to occupancy means that a smart
ventilation system can adjust ventilation depending on demand such as reducing
ventilation if the building is unoccupied. Smart ventilation can time-shift ventilation to
periods when a) indoor-outdoor temperature differences are smaller (and away from
peak outdoor temperatures and humidity), b) when indoor-outdoor temperatures are
appropriate for ventilative cooling, or c) when outdoor air quality is acceptable. Being
responsive to electricity grid needs means providing flexibility to electricity demand
(including direct signals from utilities) and integration with electric grid control strategies.
Smart ventilation systems can have sensors to detect airflow, systems pressures, or fan
energy use in such a way that systems failures can be detected and repaired, as well
as when system components need maintenance, such as filter replacement.[36]

Ventilation and combustion

[edit]

Combustion (in a fireplace, gas heater, candle, oil lamp, etc.) consumes oxygen while
producing carbon dioxide and other unhealthy gases and smoke, requiring ventilation
air. An open chimney promotes infiltration (i.e. natural ventilation) because of the



negative pressure change induced by the buoyant, warmer air leaving through the
chimney. The warm air is typically replaced by heavier, cold air.

Ventilation in a structure is also needed for removing water vapor produced by
respiration, burning, and cooking, and for removing odors. If water vapor is permitted to
accumulate, it may damage the structure, insulation, or finishes. [citation needed] When
operating, an air conditioner usually removes excess moisture from the air. A
dehumidifier may also be appropriate for removing airborne moisture.

Calculation for acceptable ventilation rate

[edit]

Ventilation guidelines are based on the minimum ventilation rate required to maintain
acceptable levels of effluents. Carbon dioxide is used as a reference point, as it is the
gas of highest emission at a relatively constant value of 0.005 L/s. The mass balance
equation is:

Q = G/(Ci ? Ca)

Q = ventilation rate (L/s)
G = CO2 generation rate
Ci = acceptable indoor CO2 concentration
Ca = ambient CO2 concentration[37]

Smoking and ventilation

[edit]

ASHRAE standard 62 states that air removed from an area with environmental tobacco
smoke shall not be recirculated into ETS-free air. A space with ETS requires more
ventilation to achieve similar perceived air quality to that of a non-smoking environment.

The amount of ventilation in an ETS area is equal to the amount of an ETS-free area
plus the amount V, where:

V = DSD × VA × A/60E

V = recommended extra flow rate in CFM (L/s)
DSD = design smoking density (estimated number of cigarettes smoked per hour
per unit area)
VA = volume of ventilation air per cigarette for the room being designed (ft3/cig)
E = contaminant removal effectiveness[38]

History



[edit]
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This ancient Roman house uses a variety of passive cooling and passive
ventilation techniques. Heavy masonry walls, small exterior windows, and a
narrow walled garden oriented N-S shade the house, preventing heat gain.
The house opens onto a central atrium with an impluvium (open to the sky);
the evaporative cooling of the water causes a cross-draft from atrium to
garden.

Primitive ventilation systems were found at the PloÃƒÆ’Ã¢â‚¬Å¾Ãƒâ€šÃ‚Â•nik
archeological site (belonging to the VinÃƒÆ’Ã¢â‚¬Å¾Ãƒâ€šÃ‚Â•a culture) in Serbia and
were built into early copper smelting furnaces. The furnace, built on the outside of the
workshop, featured earthen pipe-like air vents with hundreds of tiny holes in them and a
prototype chimney to ensure air goes into the furnace to feed the fire and smoke comes
out safely.[39]



Passive ventilation and passive cooling systems were widely written about around the
Mediterranean by Classical times. Both sources of heat and sources of cooling (such as
fountains and subterranean heat reservoirs) were used to drive air circulation, and
buildings were designed to encourage or exclude drafts, according to climate and
function. Public bathhouses were often particularly sophisticated in their heating and
cooling. Icehouses are some millennia old, and were part of a well-developed ice
industry by classical times.

The development of forced ventilation was spurred by the common belief in the late
18th and early 19th century in the miasma theory of disease, where stagnant 'airs' were
thought to spread illness. An early method of ventilation was the use of a ventilating fire
near an air vent which would forcibly cause the air in the building to circulate. English
engineer John Theophilus Desaguliers provided an early example of this when he
installed ventilating fires in the air tubes on the roof of the House of Commons. Starting
with the Covent Garden Theatre, gas burning chandeliers on the ceiling were often
specially designed to perform a ventilating role.

Mechanical systems

[edit]
Further information: Heating, ventilation, and air conditioning § Mechanical or forced
ventilation
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The Central Tower of the Palace of Westminster. This octagonal spire was
for ventilation purposes, in the more complex system imposed by Reid on
Barry, in which it was to draw air out of the Palace. The design was for the
aesthetic disguise of its function.[40][41]

A more sophisticated system involving the use of mechanical equipment to circulate the
air was developed in the mid-19th century. A basic system of bellows was put in place
to ventilate Newgate Prison and outlying buildings, by the engineer Stephen Hales in
the mid-1700s. The problem with these early devices was that they required constant
human labor to operate. David Boswell Reid was called to testify before a Parliamentary
committee on proposed architectural designs for the new House of Commons, after the
old one burned down in a fire in 1834.[40] In January 1840 Reid was appointed by the
committee for the House of Lords dealing with the construction of the replacement for
the Houses of Parliament. The post was in the capacity of ventilation engineer, in effect;
and with its creation there began a long series of quarrels between Reid and Charles
Barry, the architect.[42]

Reid advocated the installation of a very advanced ventilation system in the new House.
His design had air being drawn into an underground chamber, where it would undergo
either heating or cooling. It would then ascend into the chamber through thousands of
small holes drilled into the floor, and would be extracted through the ceiling by a special
ventilation fire within a great stack.[43]

Reid's reputation was made by his work in Westminster. He was commissioned for an
air quality survey in 1837 by the Leeds and Selby Railway in their tunnel.[44] The steam



vessels built for the Niger expedition of 1841 were fitted with ventilation systems based
on Reid's Westminster model.[45] Air was dried, filtered and passed over charcoal.[46][
47] Reid's ventilation method was also applied more fully to St. George's Hall,
Liverpool, where the architect, Harvey Lonsdale Elmes, requested that Reid should be
involved in ventilation design.[48] Reid considered this the only building in which his
system was completely carried out.[49]

Fans

[edit]

With the advent of practical steam power, ceiling fans could finally be used for
ventilation. Reid installed four steam-powered fans in the ceiling of St George's Hospital
in Liverpool, so that the pressure produced by the fans would force the incoming air
upward and through vents in the ceiling. Reid's pioneering work provides the basis for
ventilation systems to this day.[43] He was remembered as "Dr. Reid the ventilator" in
the twenty-first century in discussions of energy efficiency, by Lord Wade of Chorlton.[
50]

History and development of ventilation rate
standards

[edit]

Ventilating a space with fresh air aims to avoid "bad air". The study of what constitutes
bad air dates back to the 1600s when the scientist Mayow studied asphyxia of animals
in confined bottles.[51] The poisonous component of air was later identified as carbon
dioxide (CO2), by Lavoisier in the very late 1700s, starting a debate as to the nature of
"bad air" which humans perceive to be stuffy or unpleasant. Early hypotheses included
excess concentrations of CO2 and oxygen depletion. However, by the late 1800s,
scientists thought biological contamination, not oxygen or CO2, was the primary
component of unacceptable indoor air. However, it was noted as early as 1872 that CO

2 concentration closely correlates to perceived air quality.

The first estimate of minimum ventilation rates was developed by Tredgold in 1836.[52]
This was followed by subsequent studies on the topic by Billings [53] in 1886 and
Flugge in 1905. The recommendations of Billings and Flugge were incorporated into
numerous building codes from 1900–the 1920s and published as an industry standard



by ASHVE (the predecessor to ASHRAE) in 1914.[51]

The study continued into the varied effects of thermal comfort, oxygen, carbon dioxide,
and biological contaminants. The research was conducted with human subjects in
controlled test chambers. Two studies, published between 1909 and 1911, showed that
carbon dioxide was not the offending component. Subjects remained satisfied in
chambers with high levels of CO2, so long as the chamber remained cool.[51]
(Subsequently, it has been determined that CO2 is, in fact, harmful at concentrations
over 50,000ppm[54])

ASHVE began a robust research effort in 1919. By 1935, ASHVE-funded research
conducted by Lemberg, Brandt, and Morse – again using human subjects in test
chambers – suggested the primary component of "bad air" was an odor, perceived by
the human olfactory nerves.[55] Human response to odor was found to be logarithmic to
contaminant concentrations, and related to temperature. At lower, more comfortable
temperatures, lower ventilation rates were satisfactory. A 1936 human test chamber
study by Yaglou, Riley, and Coggins culminated much of this effort, considering odor,
room volume, occupant age, cooling equipment effects, and recirculated air
implications, which guided ventilation rates.[56] The Yaglou research has been
validated, and adopted into industry standards, beginning with the ASA code in 1946.
From this research base, ASHRAE (having replaced ASHVE) developed space-by-
space recommendations, and published them as ASHRAE Standard 62-1975:
Ventilation for acceptable indoor air quality.

As more architecture incorporated mechanical ventilation, the cost of outdoor air
ventilation came under some scrutiny. In 1973, in response to the 1973 oil crisis and
conservation concerns, ASHRAE Standards 62-73 and 62–81) reduced required
ventilation from 10 CFM (4.76 L/s) per person to 5 CFM (2.37 L/s) per person. In cold,
warm, humid, or dusty climates, it is preferable to minimize ventilation with outdoor air
to conserve energy, cost, or filtration. This critique (e.g. Tiller[57]) led ASHRAE to
reduce outdoor ventilation rates in 1981, particularly in non-smoking areas. However
subsequent research by Fanger,[58] W. Cain, and Janssen validated the Yaglou model.
The reduced ventilation rates were found to be a contributing factor to sick building
syndrome.[59]

The 1989 ASHRAE standard (Standard 62–89) states that appropriate ventilation
guidelines are 20 CFM (9.2 L/s) per person in an office building, and 15 CFM (7.1 L/s)
per person for schools, while 2004 Standard 62.1-2004 has lower recommendations
again (see tables below). ANSI/ASHRAE (Standard 62–89) speculated that "comfort
(odor) criteria are likely to be satisfied if the ventilation rate is set so that 1,000 ppm CO

2 is not exceeded"[60] while OSHA has set a limit of 5000 ppm over 8 hours.[61]

Historical ventilation rates



Author or
source

Year
Ventilation

rate (IP)
Ventilation

rate (SI)
Basis or rationale

Tredgold 1836
4 CFM per
person

2 L/s per
person

Basic metabolic needs, breathing
rate, and candle burning

Billings 1895
30 CFM per
person

15 L/s per
person

Indoor air hygiene, preventing
spread of disease

Flugge 1905
30 CFM per
person

15 L/s per
person

Excessive temperature or
unpleasant odor

ASHVE 1914
30 CFM per
person

15 L/s per
person

Based on Billings, Flugge and
contemporaries

Early US
Codes

1925
30 CFM per
person

15 L/s per
person

Same as above

Yaglou 1936
15 CFM per
person

7.5 L/s per
person

Odor control, outdoor air as a
fraction of total air

ASA 1946
15 CFM per
person

7.5 L/s per
person

Based on Yahlou and
contemporaries

ASHRAE 1975
15 CFM per
person

7.5 L/s per
person

Same as above

ASHRAE 1981
10 CFM per
person

5 L/s per
person

For non-smoking areas, reduced.

ASHRAE 1989
15 CFM per
person

7.5 L/s per
person

Based on Fanger, W. Cain, and
Janssen

ASHRAE continues to publish space-by-space ventilation rate recommendations, which
are decided by a consensus committee of industry experts. The modern descendants of
ASHRAE standard 62-1975 are ASHRAE Standard 62.1, for non-residential spaces,
and ASHRAE 62.2 for residences.

In 2004, the calculation method was revised to include both an occupant-based
contamination component and an area–based contamination component.[62] These
two components are additive, to arrive at an overall ventilation rate. The change was
made to recognize that densely populated areas were sometimes overventilated
(leading to higher energy and cost) using a per-person methodology.

Occupant Based Ventilation Rates,[62] ANSI/ASHRAE Standard 62.1-2004

IP Units SI Units Category Examples

0
cfm/person

0
L/s/person

Spaces where ventilation requirements are
primarily associated with building elements,
not occupants.

Storage Rooms,
Warehouses



5
cfm/person

2.5
L/s/person

Spaces occupied by adults, engaged in low
levels of activity

Office space

7.5
cfm/person

3.5
L/s/person

Spaces where occupants are engaged in
higher levels of activity, but not strenuous,
or activities generating more contaminants

Retail spaces,
lobbies

10
cfm/person

5
L/s/person

Spaces where occupants are engaged in
more strenuous activity, but not exercise, or
activities generating more contaminants

Classrooms,
school settings

20
cfm/person

10
L/s/person

Spaces where occupants are engaged in
exercise, or activities generating many
contaminants

dance floors,
exercise rooms

Area-based ventilation rates,[62] ANSI/ASHRAE Standard 62.1-2004

IP Units SI Units Category Examples
0.06
cfm/ft2

0.30
L/s/m2

Spaces where space contamination is normal,
or similar to an office environment

Conference rooms,
lobbies

0.12
cfm/ft2

0.60
L/s/m2

Spaces where space contamination is
significantly higher than an office environment

Classrooms,
museums

0.18
cfm/ft2

0.90
L/s/m2

Spaces where space contamination is even
higher than the previous category

Laboratories, art
classrooms

0.30
cfm/ft2

1.5
L/s/m2

Specific spaces in sports or entertainment
where contaminants are released

Sports,
entertainment

0.48
cfm/ft2

2.4
L/s/m2

Reserved for indoor swimming areas, where
chemical concentrations are high

Indoor swimming
areas

The addition of occupant- and area-based ventilation rates found in the tables above
often results in significantly reduced rates compared to the former standard. This is
compensated in other sections of the standard which require that this minimum amount
of air is delivered to the breathing zone of the individual occupant at all times. The total
outdoor air intake of the ventilation system (in multiple-zone variable air volume (VAV)
systems) might therefore be similar to the airflow required by the 1989 standard.
From 1999 to 2010, there was considerable development of the application protocol for
ventilation rates. These advancements address occupant- and process-based
ventilation rates, room ventilation effectiveness, and system ventilation effectiveness[63

]

Problems

[edit]
In hot, humid climates, unconditioned ventilation air can daily deliver
approximately 260 milliliters of water for each cubic meters per hour (m3/h) of



outdoor air (or one pound of water each day for each cubic feet per minute of
outdoor air per day), annual average.[citation needed] This is a great deal of
moisture and can create serious indoor moisture and mold problems. For
example, given a 150 m2 building with an airflow of 180 m3/h this could result in
about 47 liters of water accumulated per day.
Ventilation efficiency is determined by design and layout, and is dependent upon
the placement and proximity of diffusers and return air outlets. If they are located
closely together, supply air may mix with stale air, decreasing the efficiency of the
HVAC system, and creating air quality problems.
System imbalances occur when components of the HVAC system are improperly
adjusted or installed and can create pressure differences (too much-circulating air
creating a draft or too little circulating air creating stagnancy).
Cross-contamination occurs when pressure differences arise, forcing potentially
contaminated air from one zone to an uncontaminated zone. This often involves
undesired odors or VOCs.
Re-entry of exhaust air occurs when exhaust outlets and fresh air intakes are
either too close, prevailing winds change exhaust patterns or infiltration between
intake and exhaust air flows.
Entrainment of contaminated outdoor air through intake flows will result in indoor
air contamination. There are a variety of contaminated air sources, ranging from
industrial effluent to VOCs put off by nearby construction work.[64] A recent study
revealed that in urban European buildings equipped with ventilation systems
lacking outdoor air filtration, the exposure to outdoor-originating pollutants indoors
resulted in more Disability-Adjusted Life Years (DALYs) than exposure to indoor-
emitted pollutants.[65]

See also

[edit]
Architectural engineering
Biological safety
Cleanroom
Environmental tobacco smoke
Fume hood
Head-end power
Heating, ventilation, and air conditioning
Heat recovery ventilation
Mechanical engineering
Room air distribution
Sick building syndrome
Siheyuan
Solar chimney
Tulou
Windcatcher
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Heating, ventilation, and air conditioning
 



Fundamental
concepts

Air changes per hour
Bake-out
Building envelope
Convection
Dilution
Domestic energy consumption
Enthalpy
Fluid dynamics
Gas compressor
Heat pump and refrigeration cycle
Heat transfer
Humidity
Infiltration
Latent heat
Noise control
Outgassing
Particulates
Psychrometrics
Sensible heat
Stack effect
Thermal comfort
Thermal destratification
Thermal mass
Thermodynamics
Vapour pressure of water



Technology

Absorption-compression heat pump
Absorption refrigerator
Air barrier
Air conditioning
Antifreeze
Automobile air conditioning
Autonomous building
Building insulation materials
Central heating
Central solar heating
Chilled beam
Chilled water
Constant air volume (CAV)
Coolant
Cross ventilation
Dedicated outdoor air system (DOAS)
Deep water source cooling
Demand controlled ventilation (DCV)
Displacement ventilation
District cooling
District heating
Electric heating
Energy recovery ventilation (ERV)
Firestop
Forced-air
Forced-air gas
Free cooling
Heat recovery ventilation (HRV)
Hybrid heat
Hydronics
Ice storage air conditioning
Kitchen ventilation
Mixed-mode ventilation
Microgeneration
Passive cooling
Passive daytime radiative cooling
Passive house
Passive ventilation
Radiant heating and cooling
Radiant cooling
Radiant heating
Radon mitigation
Refrigeration
Renewable heat
Room air distribution
Solar air heat
Solar combisystem
Solar cooling
Solar heating
Thermal insulation
Thermosiphon
Underfloor air distribution
Underfloor heating
Vapor barrier
Vapor-compression refrigeration (VCRS)
Variable air volume (VAV)
Variable refrigerant flow (VRF)
Ventilation
Water heat recycling



Components

Air conditioner inverter
Air door
Air filter
Air handler
Air ionizer
Air-mixing plenum
Air purifier
Air source heat pump
Attic fan
Automatic balancing valve
Back boiler
Barrier pipe
Blast damper
Boiler
Centrifugal fan
Ceramic heater
Chiller
Condensate pump
Condenser
Condensing boiler
Convection heater
Compressor
Cooling tower
Damper
Dehumidifier
Duct
Economizer
Electrostatic precipitator
Evaporative cooler
Evaporator
Exhaust hood
Expansion tank
Fan
Fan coil unit
Fan filter unit
Fan heater
Fire damper
Fireplace
Fireplace insert
Freeze stat
Flue
Freon
Fume hood
Furnace
Gas compressor
Gas heater
Gasoline heater
Grease duct
Grille
Ground-coupled heat exchanger
Ground source heat pump
Heat exchanger
Heat pipe
Heat pump
Heating film
Heating system
HEPA
High efficiency glandless circulating pump
High-pressure cut-off switch
Humidifier
Infrared heater
Inverter compressor
Kerosene heater
Louver
Mechanical room
Oil heater
Packaged terminal air conditioner
Plenum space
Pressurisation ductwork
Process duct work
Radiator
Radiator reflector
Recuperator
Refrigerant
Register
Reversing valve
Run-around coil
Sail switch
Scroll compressor
Solar chimney
Solar-assisted heat pump
Space heater
Smoke canopy
Smoke damper
Smoke exhaust ductwork
Thermal expansion valve
Thermal wheel
Thermostatic radiator valve
Trickle vent
Trombe wall
TurboSwing
Turning vanes
Ultra-low particulate air (ULPA)
Whole-house fan
Windcatcher
Wood-burning stove
Zone valve



Measurement
and control

Air flow meter
Aquastat
BACnet
Blower door
Building automation
Carbon dioxide sensor
Clean air delivery rate (CADR)
Control valve
Gas detector
Home energy monitor
Humidistat
HVAC control system
Infrared thermometer
Intelligent buildings
LonWorks
Minimum efficiency reporting value (MERV)
Normal temperature and pressure (NTP)
OpenTherm
Programmable communicating thermostat
Programmable thermostat
Psychrometrics
Room temperature
Smart thermostat
Standard temperature and pressure (STP)
Thermographic camera
Thermostat
Thermostatic radiator valve

Professions,
trades,

and services

Architectural acoustics
Architectural engineering
Architectural technologist
Building services engineering
Building information modeling (BIM)
Deep energy retrofit
Duct cleaning
Duct leakage testing
Environmental engineering
Hydronic balancing
Kitchen exhaust cleaning
Mechanical engineering
Mechanical, electrical, and plumbing
Mold growth, assessment, and remediation
Refrigerant reclamation
Testing, adjusting, balancing



Industry
organizations

AHRI
AMCA
ASHRAE
ASTM International
BRE
BSRIA
CIBSE
Institute of Refrigeration
IIR
LEED
SMACNA
UMC

Health and safety

Indoor air quality (IAQ)
Passive smoking
Sick building syndrome (SBS)
Volatile organic compound (VOC)

See also

ASHRAE Handbook
Building science
Fireproofing
Glossary of HVAC terms
Warm Spaces
World Refrigeration Day
Template:Home automation
Template:Solar energy

 

Authority control databases Edit this at WikidataImage not found or type unknown

National Czech Republic
Other NARA

 

About Royal Supply South

Things To Do in Arapahoe County

Photo

Image not found or type unknown

https://www.google.com/maps/search/?api=1&query=Morrison+Nature+Center&query_place_id=ChIJi4wR2nhjbIcRS_92fwLutTo


Morrison Nature Center

4.7 (128)

Photo

Image not found or type unknown

Meow Wolf Denver | Convergence Station

4.5 (14709)

Photo

Image not found or type unknown

Aurora Reservoir

4.6 (1770)

Photo

Image not found or type unknown

https://www.google.com/maps/search/?api=1&query=Morrison+Nature+Center&query_place_id=ChIJi4wR2nhjbIcRS_92fwLutTo
https://www.google.com/maps/search/?api=1&query=Meow+Wolf+Denver+|+Convergence+Station&query_place_id=ChIJrY3Kkih5bIcRrc8NGVd5KQk
https://www.google.com/maps/search/?api=1&query=Aurora+Reservoir&query_place_id=ChIJs82cjaOMbIcRgLdXMFXvBKM
https://www.google.com/maps/search/?api=1&query=Aurora+History+Museum&query_place_id=ChIJUYxadeVibIcRtSNs2Am2wCc


Aurora History Museum
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Denver Museum of Nature & Science
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Museum of Outdoor Arts

4.5 (397)

Driving Directions in Arapahoe County

Driving Directions From Wells Fargo ATM to Royal Supply South
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Driving Directions From William Richheimer, MD to Royal Supply South

Driving Directions From U.S. Bank ATM to Royal Supply South

Driving Directions From Costco Wholesale to Royal Supply South

Driving Directions From King Soopers Pharmacy to Royal Supply South

Driving Directions From Lowe's Home Improvement to Royal Supply South

Air conditioning store

Air conditioning system supplier

Furnace repair service

Driving Directions From Cherry Creek Valley Ecological Park to Royal Supply South
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Driving Directions From Cherry Creek Valley Ecological Park to Royal Supply South
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https://www.google.com/maps/dir/King+Soopers/Royal+Supply+South/@39.6545686,-105.0511676,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sChIJUwi2ThmAa4cRIyDrqukys2c!2m2!1d-105.0511676!2d39.6545686!1m5!1m1!1sChIJ06br1RqAbIcRAjyWXdlXZaw!2m2!1d-105.0233105!2d39.6435918!3e0
https://www.google.com/maps/dir/Walgreens/Royal+Supply+South/@39.6246603,-105.0200245,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sChIJ8zuXzzqAbIcRPsc0NxgBh7g!2m2!1d-105.0200245!2d39.6246603!1m5!1m1!1sChIJ06br1RqAbIcRAjyWXdlXZaw!2m2!1d-105.0233105!2d39.6435918!3e2
https://www.google.com/maps/dir/Sheridan+High+School/Royal+Supply+South/@39.6438845,-105.0295671,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sChIJUU_Q0AKAbIcRj5a2SrbiGeM!2m2!1d-105.0295671!2d39.6438845!1m5!1m1!1sChIJ06br1RqAbIcRAjyWXdlXZaw!2m2!1d-105.0233105!2d39.6435918!3e1
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Filtering Particulates through Electrostatic OptionsView GBP
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Testing Indoor Air Quality with Basic Tools
Selecting Appropriate Multimeters for HVAC Checks
Exploring Optional Dehumidifiers for Damp Areas
Dressing for Extreme Temperatures during Repairs
Identifying Goggles Designed for Refrigerant Handling

Royal Supply Inc

Phone : +16362969959

City : Wichita

State : KS

Zip : 67216

Address : Unknown Address

Google Business Profile

Company Website : https://royal-durhamsupply.com/locations/wichita-kansas/

https://www.google.com/maps/dir/Denver+Museum+of+Nature+&+Science/Royal+Supply+South/@39.7475261,-104.9428078,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sunknown!2m2!1d-104.9428078!2d39.7475261!1m5!1m1!1sChIJ06br1RqAbIcRAjyWXdlXZaw!2m2!1d-105.0233105!2d39.6435918!3e0
https://www.google.com/maps/dir/Four+Mile+Historic+Park/Royal+Supply+South/@39.7035422,-104.9292325,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sunknown!2m2!1d-104.9292325!2d39.7035422!1m5!1m1!1sChIJ06br1RqAbIcRAjyWXdlXZaw!2m2!1d-105.0233105!2d39.6435918!3e2
https://www.google.com/maps/dir/Aurora+History+Museum/Royal+Supply+South/@39.711213,-104.813431,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sunknown!2m2!1d-104.813431!2d39.711213!1m5!1m1!1sChIJ06br1RqAbIcRAjyWXdlXZaw!2m2!1d-105.0233105!2d39.6435918!3e1
https://www.google.com/maps/dir/Cherry+Creek+Valley+Ecological+Park/Royal+Supply+South/@39.5822885,-104.8038771,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sunknown!2m2!1d-104.8038771!2d39.5822885!1m5!1m1!1sChIJ06br1RqAbIcRAjyWXdlXZaw!2m2!1d-105.0233105!2d39.6435918!3e3
https://www.google.com/maps/dir/Cherry+Creek+Valley+Ecological+Park/Royal+Supply+South/@39.5822885,-104.8038771,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sunknown!2m2!1d-104.8038771!2d39.5822885!1m5!1m1!1sChIJ06br1RqAbIcRAjyWXdlXZaw!2m2!1d-105.0233105!2d39.6435918!3e0
https://www.google.com/maps/search/?api=1&query=39.6435918,-105.0233105&query_place_id=ChIJ06br1RqAbIcRAjyWXdlXZaw
https://sos-bg-sof-1.exo.io/corp-esg/royalsupplyinc/mobilehomehvac/comparing-protective-gloves-for-different-tasks.html
https://sos-bg-sof-1.exo.io/corp-esg/royalsupplyinc/mobilehomehvac/choosing-coil-cleaners-suited-to-household-needs.html
https://sos-bg-sof-1.exo.io/corp-esg/royalsupplyinc/mobilehomehvac/exploring-optional-dehumidifiers-for-damp-areas.html
https://sos-bg-sof-1.exo.io/corp-esg/royalsupplyinc/mobilehomehvac/index.html
https://sos-bg-sof-1.exo.io/corp-esg/royalsupplyinc/mobilehomehvac/managing-excess-humidity-with-simple-techniques.html
https://www.google.com/maps/place/Royal+Supply+Inc/@37.603028,-97.3359394,17z/data=!4m6!3m5!1s0x87bae5c1c584fbd5:0x164226561f776475!8m2!3d37.603028!4d-97.3333645!16s/g/1thw77fk?entry=ttu&g_ep=EgoyMDI0MTIxMS4wIKXMDSoASAFQAw==
https://royal-durhamsupply.com/locations/wichita-kansas/
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