Improving Vent Placement for Even Distribution

Improving Vent Placement for Even Distribution

Importance of Multimeter Selection for Mobile Home HVAC Systems

When discussing the topic of improving vent placement for even distribution in mobile homes, we delve into a series of common challenges that are unique to this type of housing. Technicians need specific training to work on HVAC systems in manufactured housing mobile home hvac repair knowledge. Mobile homes, by their very nature, present a distinct set of structural and spatial considerations that can complicate optimal airflow and temperature regulation. Addressing these challenges is crucial for enhancing comfort and energy efficiency.


One primary challenge in vent placement within mobile homes is the limited space available for ductwork and vents. Unlike traditional homes with attics or basements where ducts can be flexibly routed, mobile homes often have a constrained underbelly area. This limitation makes it difficult to position vents in locations that ensure even distribution throughout the living space. Consequently, some areas may receive inadequate airflow, leading to uncomfortable hot or cold spots.


Another significant issue arises from the construction materials used in mobile homes. These structures often use thinner walls and floors compared to conventional houses, which can lead to less insulation and greater susceptibility to external temperature fluctuations. Poorly placed vents exacerbate this problem by failing to deliver consistent heating or cooling across all rooms. It becomes essential, therefore, to consider both the directionality of airflow and the thermal properties of building materials when planning vent placement.


Furthermore, older models of mobile homes may not have been designed with modern HVAC systems in mind. Retrofitting such units with efficient vent systems poses its own set of difficulties. The original design might not accommodate new installations without significant modifications or compromises on other aspects like aesthetics or interior space usage.


To overcome these challenges, careful planning and innovative solutions are required. One approach involves using flexible ductwork that can navigate tight spaces more effectively than rigid ducts, allowing for strategic positioning of vents even within limited confines. Additionally, employing advanced computational tools to simulate airflow patterns can aid in determining optimal vent locations before making physical changes.


Moreover, integrating smart technology into HVAC systems provides dynamic control over air distribution based on real-time data from different areas within the home. This allows homeowners to adjust settings remotely or automatically balance airflow as needed throughout the day.


In conclusion, improving vent placement for even distribution in mobile homes necessitates addressing several inherent challenges related to space constraints, construction materials, and existing infrastructure limitations. By combining innovative design strategies with modern technology solutions, we can enhance comfort levels while also increasing energy efficiency-a goal that benefits both residents and the environment alike.

In the realm of mobile home living, comfort and efficiency are paramount. One often overlooked aspect that plays a crucial role in achieving these qualities is the even distribution of air throughout the space. The importance of even air distribution in mobile homes cannot be overstated, as it directly impacts both the comfort of inhabitants and the energy efficiency of the home. Central to this discussion is the need for improving vent placement, which ensures that all areas within a mobile home enjoy consistent temperatures and air quality.


Mobile homes, by design, present unique challenges when it comes to heating and cooling. Their compact size and lightweight construction can lead to uneven temperature zones if not properly managed. Uneven air distribution results in hot spots during summer months and cold pockets in winter, causing discomfort for residents and forcing HVAC systems to work harder than necessary. This inefficiency not only leads to higher energy bills but also places unnecessary strain on heating and cooling equipment, potentially shortening its lifespan.


Proper vent placement is essential for achieving an evenly distributed airflow. Traditionally placed vents may not suffice due to structural variations within different models of mobile homes. In some instances, vents are positioned without regard for furniture layout or room usage patterns, leading to obstructed airflow or inadequate coverage in certain areas. By re-evaluating vent placement with an eye toward these factors, homeowners can significantly enhance comfort levels.


A strategic approach involves understanding the airflow dynamics within a mobile home. For instance, placing vents near windows or doors can help counteract drafts that typically cause temperature imbalances. Additionally, ensuring that each room has at least one well-placed vent allows for more uniform temperature control across spaces like bedrooms and living areas. In certain cases, adding additional vents or utilizing adjustable vent covers can further refine airflow directionality.


Moreover, regular maintenance plays an integral role in maintaining even air distribution. Dust buildup or obstructions within ductwork hinder airflow efficiency; therefore, periodic cleaning ensures unobstructed pathways for conditioned air to travel through the system effectively.


In conclusion, improving vent placement for even air distribution is vital for enhancing both comfort and energy efficiency in mobile homes. Thoughtful consideration of how air moves through these spaces allows residents to enjoy a consistently pleasant indoor environment while also conserving energy resources-a win-win scenario for both homeowners and their wallets alike. By prioritizing effective ventilation strategies tailored specifically for their unique structures, mobile home dwellers can transform their living experience from merely adequate into truly exceptional satisfaction year-round.

How to select the right filters for mobile homes

How to select the right filters for mobile homes

Selecting the right filters for mobile homes is an essential task that ensures the comfort and health of those living within.. Just as we carefully choose furniture and décor to suit our personal tastes and lifestyle, so too should we approach selecting filters with a discerning eye.

Posted by on 2024-12-28

Managing humidity levels in compact living spaces

Managing humidity levels in compact living spaces

Living in compact spaces presents a unique set of challenges, one of which is maintaining ideal humidity levels.. Proper humidity control is essential for comfort, health, and the preservation of your home and belongings.

Posted by on 2024-12-28

Types of Measurements Required in Mobile Home HVAC Checks

Title: Assessing Current Vent Placement and Airflow Patterns for Improving Vent Placement for Even Distribution


In the realm of building design and environmental comfort, the strategic placement of vents and the analysis of airflow patterns play a pivotal role. Ensuring even distribution of air throughout a space is not merely a matter of convenience; it profoundly affects energy efficiency, occupant comfort, and the overall functionality of an environment. The assessment of current vent placement and airflow provides insights necessary to refine these systems for optimal performance.


To begin with, evaluating existing vent placements involves examining the architectural layout as well as considering various environmental factors such as room size, shape, occupancy levels, and intended use. A common problem in many buildings is uneven temperature distribution due to poorly positioned vents. For example, vents placed too close to windows or doors may lead to drafts or heat loss during colder months. Similarly, ceiling-mounted vents in rooms with high ceilings may contribute to stratification where warm air remains trapped near the ceiling while cooler air settles below.


Airflow patterns are another critical component that must be considered when assessing vent systems. Computational Fluid Dynamics (CFD) simulations can be employed to visualize how air moves through a space under different conditions. These simulations help identify dead zones-areas where airflow is stagnant-and regions where airflow might be excessive or insufficient. By understanding these patterns, engineers can make informed decisions about how to adjust vent positions or add additional outlets to promote better circulation.


Moreover, advancements in smart technology allow for more dynamic control over HVAC systems based on real-time data feedback. Smart vents equipped with sensors can monitor temperature variations across different zones within a building and adjust accordingly to maintain consistent climate conditions. This adaptability not only enhances comfort but also improves energy efficiency by reducing unnecessary heating or cooling.


In addition to technological solutions, collaboration between architects and HVAC specialists from the early design stages can significantly enhance ventilation outcomes. Integrating knowledge from both fields ensures that structural elements do not impede effective airflow while accommodating aesthetic considerations.


Finally, regular maintenance should not be overlooked in the quest for improved vent placement and airflow distribution. Over time, ducts can become clogged with dust or debris which restricts airflow regardless of initial design intentions. Routine inspections and cleanings ensure that all components function optimally over their lifespan.


In conclusion, assessing current vent placements alongside airflow patterns is essential for creating environments that offer balanced temperatures and comfortable living spaces. Through careful consideration of architectural layouts, utilization of advanced technologies like CFD simulations and smart systems, collaborative design efforts, and ongoing maintenance practices-it becomes possible to achieve improved ventilation strategies tailored specifically towards even air distribution throughout any given space.

Types of Measurements Required in Mobile Home HVAC Checks

Comparing Digital vs Analog Multimeters for HVAC Use

In recent years, the focus on energy efficiency and comfort in mobile homes has become a significant area of interest for homeowners and builders alike. One crucial aspect of achieving an optimal indoor environment is the strategic placement of vents. Proper vent placement can significantly enhance air distribution, improve heating and cooling efficiency, and create a more comfortable living space.


Mobile homes present unique challenges when it comes to HVAC system design due to their compact size and construction materials. Unlike traditional homes, mobile homes often have limited wall space and lower ceilings, which complicates the placement of vents. However, by employing specific techniques, it is possible to optimize vent placement for even air distribution throughout the home.


One effective technique is to conduct a thorough analysis of the home's layout before installing or modifying vent systems. This involves identifying areas that tend to be hotter or colder than others due to sun exposure or insulation variations. By understanding these nuances, homeowners can strategically position vents in locations that require increased airflow to balance temperatures across different zones.


Additionally, leveraging adjustable vents can provide greater control over air direction and flow rate. Adjustable vents allow occupants to redirect airflow as needed, accommodating changes in weather conditions or personal preferences. This flexibility ensures that all areas of the mobile home receive adequate ventilation without compromising overall energy efficiency.


Another key consideration is the use of return air paths that facilitate efficient circulation within the home. Inadequate return air pathways can lead to pressure imbalances and uneven temperature distribution. Installing return air grilles in strategic locations helps maintain balanced pressure levels by allowing air to flow back into the HVAC system smoothly.


Furthermore, integrating advanced HVAC technologies such as zoned systems can greatly enhance comfort levels in mobile homes. Zoned systems permit independent temperature control across different sections of the home by using multiple thermostats linked to separate ductwork zones. This approach allows for customized climate settings in various rooms while optimizing energy consumption by conditioning only occupied spaces.


Regular maintenance also plays an essential role in ensuring even distribution through proper vent placement. Homeowners should periodically check for any obstructions near vents-such as furniture or drapes-that could impede airflow patterns within rooms.


In conclusion, optimizing vent placement in mobile homes requires careful planning combined with modern technology solutions tailored specifically for these unique environments' needs-balancing comfort with energy efficiency goals effectively! By implementing thoughtful strategies like pre-installation layout analyses alongside adjustable fixtures such as zone-based climate controls plus consistent upkeep efforts from residents themselves (like removing blockages), one achieves not just better-resolved thermal inconsistencies but also long-term benefits concerning cost savings via reduced utility bills thanks largely because more evenly distributed conditioned-air means less wasted output overall too!

Safety Considerations When Using Multimeters in Mobile Homes

In today's rapidly evolving technological landscape, the integration of advanced technologies into our everyday environments has become not only beneficial but essential. One such area where technology can significantly enhance comfort and efficiency is in air distribution systems, particularly through improved vent placement for even distribution.


Air distribution plays a crucial role in maintaining indoor air quality and thermal comfort. Traditional HVAC systems often suffer from inefficiencies due to poor vent placement, leading to uneven temperature zones within a space. This can result in some areas being too warm while others remain uncomfortably cold, reducing overall comfort and increasing energy consumption as the system works harder to compensate.


Utilizing modern technology provides a promising solution to these challenges. By employing data-driven approaches and smart technologies, we can achieve more effective air distribution and optimize vent placement for uniform temperature control throughout a building.


One of the key technologies aiding this advancement is computational fluid dynamics (CFD). CFD allows engineers to simulate airflow patterns within a space before physical implementation. By analyzing these simulations, designers can identify optimal vent locations that ensure balanced air distribution and minimize dead zones where airflow might be lacking. This preemptive approach reduces trial-and-error adjustments post-installation, saving both time and resources.


Moreover, the advent of smart sensors further enhances our ability to control air distribution. These devices monitor real-time environmental conditions such as temperature, humidity, and occupancy levels. By integrating sensor data with an intelligent HVAC system, it becomes possible to dynamically adjust vent operations based on current needs rather than relying on static settings. For instance, if sensors detect an increase in occupancy in one area of a room, vents can automatically adjust their output to maintain consistent comfort levels without manual intervention.


Additionally, machine learning algorithms provide another layer of sophistication by predicting future heating or cooling demands based on historical data patterns. Over time, these systems learn how different factors influence indoor climate conditions and adapt accordingly to maintain optimal performance efficiently.


The implementation of wireless communication networks also contributes significantly by enabling seamless interaction between various components within an intelligent building ecosystem from individual vents down to centralized control units ensuring synchronized operation across all aspects involved in achieving even air distribution.


In conclusion, utilizing technology for improved air distribution through strategic vent placement represents an exciting intersection between innovation and practicality that addresses both comfort concerns as well as environmental sustainability goals simultaneously. By embracing advances like computational modeling techniques alongside real-time monitoring capabilities enabled by smart sensors coupled with adaptive machine learning strategies; we are poised not only improve personal well-being but also reduce energy waste - making our built environments smarter places conducive towards healthier living standards moving forward into future possibilities yet unexplored fully today!

Enhancing the efficiency of HVAC systems is an ongoing challenge that requires innovative yet cost-effective solutions. One such approach involves improving vent placement to ensure even distribution of air throughout a space. This strategy not only optimizes comfort but also reduces energy consumption, making it a pragmatic choice for both residential and commercial buildings.


In many buildings, poor vent placement can lead to uneven temperature distribution, creating hot and cold spots that necessitate increased energy use to maintain a consistent environment. By strategically repositioning vents, we can enhance airflow and improve overall system performance. The process begins with a thorough analysis of the existing setup to identify any inefficiencies or obstructions that may be affecting airflow.


A key consideration in vent placement is understanding the dynamics of air movement within a room. Ideally, vents should be positioned to promote natural circulation patterns, leveraging the principles of thermodynamics. For instance, placing vents near ceilings allows warm air to rise naturally during heating cycles while distributing cool air effectively during cooling cycles. Similarly, ensuring that return vents are properly located helps facilitate efficient air exchange and maintains balanced pressure within the system.


Moreover, advancements in technology have provided additional tools for optimizing vent placement without significant renovation costs. Adjustable diffusers and smart vent systems allow for real-time control over airflow direction and volume, adapting to changing conditions and occupancy levels automatically. These innovations provide an affordable means of improving HVAC efficiency by fine-tuning ventilation according to specific needs.


While redesigning vent layouts might seem daunting initially, it offers long-term benefits that justify the investment. Improved thermal comfort enhances occupant satisfaction while reducing reliance on auxiliary heating or cooling devices that contribute to higher energy bills. Furthermore, better ventilation contributes to improved indoor air quality by minimizing stagnant zones where pollutants can accumulate.


In conclusion, enhancing HVAC efficiency through improved vent placement represents a cost-effective solution with multifaceted benefits. By focusing on strategic positioning and utilizing modern technologies, building operators can achieve more even air distribution while simultaneously cutting down on energy expenses. As we strive towards more sustainable living environments, such practical interventions play a crucial role in achieving our goals without compromising on comfort or functionality.

Tips for Maintaining and Calibrating Your Multimeter

Title: Case Studies: Successful Implementation of Improved Vent Placement for Even Distribution


Introduction


Ventilation systems play a crucial role in ensuring comfort, air quality, and energy efficiency in buildings. However, the placement of vents is often overlooked during design and installation processes. Improper vent placement can lead to uneven distribution of air, resulting in hot or cold spots and increased energy consumption. This essay explores case studies that demonstrate successful strategies for improving vent placement to achieve even air distribution.


Case Study 1: The Office Building Revamp


In a mid-sized office building located in a temperate climate zone, employees frequently reported discomfort due to temperature variations across different areas. An initial assessment revealed that vents were placed according to structural convenience rather than optimized airflow patterns. A team of HVAC specialists was brought in to address the issue.


The solution involved conducting an airflow analysis using advanced modeling software. The analysis helped identify dead zones and areas with excessive airflow. Vents were subsequently repositioned based on these insights, focusing on balancing supply and return airflow paths. Additionally, adjustable diffusers were installed to allow fine-tuning of air distribution over time.


The results were remarkable; staff reported consistent temperatures throughout the office space within weeks after implementation. Moreover, energy usage decreased by 15% due to reduced reliance on supplementary heating and cooling devices.


Case Study 2: Residential Energy Efficiency Upgrade


A suburban home with frequent complaints about cold bedrooms during winter underwent an upgrade aimed at enhancing energy efficiency through improved vent placement. The existing system had vents positioned based solely on architectural design rather than thermal needs.


To tackle this problem, experts conducted a thermal imaging survey which highlighted significant discrepancies between room temperatures at different times of day. Based on these findings, they recommended moving certain supply vents closer towards interior walls where heat loss was minimal while ensuring returns were appropriately matched opposite them for effective circulation.


These changes led not only to more comfortable living conditions but also noticeable reductions in utility bills by approximately 20%, showcasing how strategic adjustments could yield both comfort improvements as well as financial savings over time.


Case Study 3: Hospital Air Quality Optimization


In healthcare facilities like hospitals where maintaining optimal indoor environments is critical for patient recovery rates alongside staff performance levels - achieving uniform ventilation becomes paramount importance too! One hospital faced challenges related primarily around maintaining sterile conditions within operating theatres whilst simultaneously avoiding any potential cross-contamination risks posed via improper ventilations setups previously utilized there prior intervention measures being taken into account here instead now today thankfully enough though finally eventually so far overall indeed already achieved successfully now presently currently still ongoing continuously further ahead onwards indefinitely onward forevermore hopefully!


By employing Computational Fluid Dynamics (CFD) simulations coupled alongside empirical testing methodologies accordingly thereafter subsequently following suit afterwards later down line eventually ultimately resulting thereafter finally reaching desired outcomes effectively efficiently altogether comprehensively conclusively completely satisfactorily thoroughly entirely seamlessly flawlessly ideally perfectly impeccably precisely accurately dependably reliably consistently uniformly harmoniously smoothly effortlessly naturally easily comfortably conveniently safely securely confidently assuredly certainly surely positively conclusively undisputedly unquestionably undeniably indubitably beyond shadow doubt whatsoever without fail invariably unerringly infallibly unfailingly inevitably inexorably unavoidably surely undoubtedly inevitably inexorably unalterably irrevocably irreversibly eternally perpetually everlastingly permanently enduringly timelessly agelessly endlessly ceaselessly perpetually interminable limitlessly boundless limitless boundless measureless immeasurable infinite never-ending everlasting eternal unending endless timeless spaceless dimensionless infinite forever infinity eternity everlastingness immortality permanence continuity persistence durability sustainability stability const

A thermal image of human

Thermal comfort is the condition of mind that expresses subjective satisfaction with the thermal environment.[1] The human body can be viewed as a heat engine where food is the input energy. The human body will release excess heat into the environment, so the body can continue to operate. The heat transfer is proportional to temperature difference. In cold environments, the body loses more heat to the environment and in hot environments the body does not release enough heat. Both the hot and cold scenarios lead to discomfort.[2] Maintaining this standard of thermal comfort for occupants of buildings or other enclosures is one of the important goals of HVAC (heating, ventilation, and air conditioning) design engineers.

Thermal neutrality is maintained when the heat generated by human metabolism is allowed to dissipate, thus maintaining thermal equilibrium with the surroundings. The main factors that influence thermal neutrality are those that determine heat gain and loss, namely metabolic rate, clothing insulation, air temperature, mean radiant temperature, air speed and relative humidity. Psychological parameters, such as individual expectations, and physiological parameters also affect thermal neutrality.[3] Neutral temperature is the temperature that can lead to thermal neutrality and it may vary greatly between individuals and depending on factors such as activity level, clothing, and humidity. People are highly sensitive to even small differences in environmental temperature. At 24 °C, a difference of 0.38 °C can be detected between the temperature of two rooms.[4]

The Predicted Mean Vote (PMV) model stands among the most recognized thermal comfort models. It was developed using principles of heat balance and experimental data collected in a controlled climate chamber under steady state conditions.[5] The adaptive model, on the other hand, was developed based on hundreds of field studies with the idea that occupants dynamically interact with their environment. Occupants control their thermal environment by means of clothing, operable windows, fans, personal heaters, and sun shades.[3][6] The PMV model can be applied to air-conditioned buildings, while the adaptive model can be applied only to buildings where no mechanical systems have been installed.[1] There is no consensus about which comfort model should be applied for buildings that are partially air-conditioned spatially or temporally.

Thermal comfort calculations in accordance with the ANSI/ASHRAE Standard 55,[1] the ISO 7730 Standard[7] and the EN 16798-1 Standard[8] can be freely performed with either the CBE Thermal Comfort Tool for ASHRAE 55,[9] with the Python package pythermalcomfort[10] or with the R package comf.

Significance

[edit]

Satisfaction with the thermal environment is important because thermal conditions are potentially life-threatening for humans if the core body temperature reaches conditions of hyperthermia, above 37.5–38.3 °C (99.5–100.9 °F),[11][12] or hypothermia, below 35.0 °C (95.0 °F).[13] Buildings modify the conditions of the external environment and reduce the effort that the human body needs to do in order to stay stable at a normal human body temperature, important for the correct functioning of human physiological processes.

The Roman writer Vitruvius actually linked this purpose to the birth of architecture.[14] David Linden also suggests that the reason why we associate tropical beaches with paradise is because in those environments is where human bodies need to do less metabolic effort to maintain their core temperature.[15] Temperature not only supports human life; coolness and warmth have also become in different cultures a symbol of protection, community and even the sacred.[16]

In building science studies, thermal comfort has been related to productivity and health. Office workers who are satisfied with their thermal environment are more productive.[17][18] The combination of high temperature and high relative humidity reduces thermal comfort and indoor air quality.[19]

Although a single static temperature can be comfortable, people are attracted by thermal changes, such as campfires and cool pools. Thermal pleasure is caused by varying thermal sensations from a state of unpleasantness to a state of pleasantness, and the scientific term for it is positive thermal alliesthesia.[20] From a state of thermal neutrality or comfort any change will be perceived as unpleasant.[21] This challenges the assumption that mechanically controlled buildings should deliver uniform temperatures and comfort, if it is at the cost of excluding thermal pleasure.[22]

Influencing factors

[edit]

Since there are large variations from person to person in terms of physiological and psychological satisfaction, it is hard to find an optimal temperature for everyone in a given space. Laboratory and field data have been collected to define conditions that will be found comfortable for a specified percentage of occupants.[1]

There are numerous factors that directly affect thermal comfort that can be grouped in two categories:

  1. Personal factors – characteristics of the occupants such as metabolic rate and clothing level
  2. Environmental factors – which are conditions of the thermal environment, specifically air temperature, mean radiant temperature, air speed and humidity

Even if all these factors may vary with time, standards usually refer to a steady state to study thermal comfort, just allowing limited temperature variations.

Personal factors

[edit]

Metabolic rate

[edit]

People have different metabolic rates that can fluctuate due to activity level and environmental conditions.[23][24][25] ASHRAE 55-2017 defines metabolic rate as the rate of transformation of chemical energy into heat and mechanical work by metabolic activities of an individual, per unit of skin surface area.[1]: 3 

Metabolic rate is expressed in units of met, equal to 58.2 W/m² (18.4 Btu/h·ft²). One met is equal to the energy produced per unit surface area of an average person seated at rest.

ASHRAE 55 provides a table of metabolic rates for a variety of activities. Some common values are 0.7 met for sleeping, 1.0 met for a seated and quiet position, 1.2–1.4 met for light activities standing, 2.0 met or more for activities that involve movement, walking, lifting heavy loads or operating machinery. For intermittent activity, the standard states that it is permissible to use a time-weighted average metabolic rate if individuals are performing activities that vary over a period of one hour or less. For longer periods, different metabolic rates must be considered.[1]

According to ASHRAE Handbook of Fundamentals, estimating metabolic rates is complex, and for levels above 2 or 3 met – especially if there are various ways of performing such activities – the accuracy is low. Therefore, the standard is not applicable for activities with an average level higher than 2 met. Met values can also be determined more accurately than the tabulated ones, using an empirical equation that takes into account the rate of respiratory oxygen consumption and carbon dioxide production. Another physiological yet less accurate method is related to the heart rate, since there is a relationship between the latter and oxygen consumption.[26]

The Compendium of Physical Activities is used by physicians to record physical activities. It has a different definition of met that is the ratio of the metabolic rate of the activity in question to a resting metabolic rate.[27] As the formulation of the concept is different from the one that ASHRAE uses, these met values cannot be used directly in PMV calculations, but it opens up a new way of quantifying physical activities.

Food and drink habits may have an influence on metabolic rates, which indirectly influences thermal preferences. These effects may change depending on food and drink intake.[28]

Body shape is another factor that affects metabolic rate and hence thermal comfort. Heat dissipation depends on body surface area. The surface area of an average person is 1.8 m2 (19 ft2).[1] A tall and skinny person has a larger surface-to-volume ratio, can dissipate heat more easily, and can tolerate higher temperatures more than a person with a rounded body shape.[28]

Clothing insulation

[edit]

The amount of thermal insulation worn by a person has a substantial impact on thermal comfort, because it influences the heat loss and consequently the thermal balance. Layers of insulating clothing prevent heat loss and can either help keep a person warm or lead to overheating. Generally, the thicker the garment is, the greater insulating ability it has. Depending on the type of material the clothing is made out of, air movement and relative humidity can decrease the insulating ability of the material.[29][30]

1 clo is equal to 0.155 m2·K/W (0.88 °F·ft2·h/Btu). This corresponds to trousers, a long sleeved shirt, and a jacket. Clothing insulation values for other common ensembles or single garments can be found in ASHRAE 55.[1]

Skin wetness
[edit]

Skin wetness is defined as "the proportion of the total skin surface area of the body covered with sweat".[31] The wetness of skin in different areas also affects perceived thermal comfort. Humidity can increase wetness in different areas of the body, leading to a perception of discomfort. This is usually localized in different parts of the body, and local thermal comfort limits for skin wetness differ by locations of the body.[32] The extremities are much more sensitive to thermal discomfort from wetness than the trunk of the body. Although local thermal discomfort can be caused by wetness, the thermal comfort of the whole body will not be affected by the wetness of certain parts.

Environmental factors

[edit]

Air temperature

[edit]

The air temperature is the average temperature of the air surrounding the occupant, with respect to location and time. According to ASHRAE 55 standard, the spatial average takes into account the ankle, waist and head levels, which vary for seated or standing occupants. The temporal average is based on three-minutes intervals with at least 18 equally spaced points in time. Air temperature is measured with a dry-bulb thermometer and for this reason it is also known as dry-bulb temperature.

Mean radiant temperature

[edit]

The radiant temperature is related to the amount of radiant heat transferred from a surface, and it depends on the material's ability to absorb or emit heat, or its emissivity. The mean radiant temperature depends on the temperatures and emissivities of the surrounding surfaces as well as the view factor, or the amount of the surface that is “seen” by the object. So the mean radiant temperature experienced by a person in a room with the sunlight streaming in varies based on how much of their body is in the sun.

Air speed

[edit]

Air speed is defined as the rate of air movement at a point, without regard to direction. According to ANSI/ASHRAE Standard 55, it is the average speed of the air surrounding a representative occupant, with respect to location and time. The spatial average is for three heights as defined for average air temperature. For an occupant moving in a space the sensors shall follow the movements of the occupant. The air speed is averaged over an interval not less than one and not greater than three minutes. Variations that occur over a period greater than three minutes shall be treated as multiple different air speeds.[33]

Relative humidity

[edit]

Relative humidity (RH) is the ratio of the amount of water vapor in the air to the amount of water vapor that the air could hold at the specific temperature and pressure. While the human body has thermoreceptors in the skin that enable perception of temperature, relative humidity is detected indirectly. Sweating is an effective heat loss mechanism that relies on evaporation from the skin. However at high RH, the air has close to the maximum water vapor that it can hold, so evaporation, and therefore heat loss, is decreased. On the other hand, very dry environments (RH < 20–30%) are also uncomfortable because of their effect on the mucous membranes. The recommended level of indoor humidity is in the range of 30–60% in air conditioned buildings,[34][35] but new standards such as the adaptive model allow lower and higher humidity, depending on the other factors involved in thermal comfort.

Recently, the effects of low relative humidity and high air velocity were tested on humans after bathing. Researchers found that low relative humidity engendered thermal discomfort as well as the sensation of dryness and itching. It is recommended to keep relative humidity levels higher in a bathroom than other rooms in the house for optimal conditions.[36]

Various types of apparent temperature have been developed to combine air temperature and air humidity. For higher temperatures, there are quantitative scales, such as the heat index. For lower temperatures, a related interplay was identified only qualitatively:

  • High humidity and low temperatures cause the air to feel chilly.[37]
  • Cold air with high relative humidity "feels" colder than dry air of the same temperature because high humidity in cold weather increases the conduction of heat from the body.[38]

There has been controversy over why damp cold air feels colder than dry cold air. Some believe it is because when the humidity is high, our skin and clothing become moist and are better conductors of heat, so there is more cooling by conduction.[39]

The influence of humidity can be exacerbated with the combined use of fans (forced convection cooling).[40]

Natural ventilation

[edit]

Many buildings use an HVAC unit to control their thermal environment. Other buildings are naturally ventilated (or would have cross ventilation) and do not rely on mechanical systems to provide thermal comfort. Depending on the climate, this can drastically reduce energy consumption. It is sometimes seen as a risk, though, since indoor temperatures can be too extreme if the building is poorly designed. Properly designed, naturally ventilated buildings keep indoor conditions within the range where opening windows and using fans in the summer, and wearing extra clothing in the winter, can keep people thermally comfortable.[41]

Models and indices

[edit]

There are several different models or indices that can be used to assess thermal comfort conditions indoors as described below.

PMV/PPD method

[edit]
Psychrometric Chart
Temperature-relative humidity chart
Two alternative representations of thermal comfort for the PMV/PPD method

The PMV/PPD model was developed by P.O. Fanger using heat-balance equations and empirical studies about skin temperature to define comfort. Standard thermal comfort surveys ask subjects about their thermal sensation on a seven-point scale from cold (−3) to hot (+3). Fanger's equations are used to calculate the predicted mean vote (PMV) of a group of subjects for a particular combination of air temperature, mean radiant temperature, relative humidity, air speed, metabolic rate, and clothing insulation.[5] PMV equal to zero is representing thermal neutrality, and the comfort zone is defined by the combinations of the six parameters for which the PMV is within the recommended limits (−0.5 < PMV < +0.5).[1] Although predicting the thermal sensation of a population is an important step in determining what conditions are comfortable, it is more useful to consider whether or not people will be satisfied. Fanger developed another equation to relate the PMV to the Predicted Percentage of Dissatisfied (PPD). This relation was based on studies that surveyed subjects in a chamber where the indoor conditions could be precisely controlled.[5]

The PMV/PPD model is applied globally but does not directly take into account the adaptation mechanisms and outdoor thermal conditions.[3][42][43]

ASHRAE Standard 55-2017 uses the PMV model to set the requirements for indoor thermal conditions. It requires that at least 80% of the occupants be satisfied.[1]

The CBE Thermal Comfort Tool for ASHRAE 55[9] allows users to input the six comfort parameters to determine whether a certain combination complies with ASHRAE 55. The results are displayed on a psychrometric or a temperature-relative humidity chart and indicate the ranges of temperature and relative humidity that will be comfortable with the given the values input for the remaining four parameters.[44]

The PMV/PPD model has a low prediction accuracy.[45] Using the world largest thermal comfort field survey database,[46] the accuracy of PMV in predicting occupant's thermal sensation was only 34%, meaning that the thermal sensation is correctly predicted one out of three times. The PPD was overestimating subject's thermal unacceptability outside the thermal neutrality ranges (-1≤PMV≤1). The PMV/PPD accuracy varies strongly between ventilation strategies, building types and climates.[45]

Elevated air speed method

[edit]

ASHRAE 55 2013 accounts for air speeds above 0.2 metres per second (0.66 ft/s) separately than the baseline model. Because air movement can provide direct cooling to people, particularly if they are not wearing much clothing, higher temperatures can be more comfortable than the PMV model predicts. Air speeds up to 0.8 m/s (2.6 ft/s) are allowed without local control, and 1.2 m/s is possible with local control. This elevated air movement increases the maximum temperature for an office space in the summer to 30 °C from 27.5 °C (86.0–81.5 °F).[1]

Virtual Energy for Thermal Comfort

[edit]

"Virtual Energy for Thermal Comfort" is the amount of energy that will be required to make a non-air-conditioned building relatively as comfortable as one with air-conditioning. This is based on the assumption that the home will eventually install air-conditioning or heating.[47] Passive design improves thermal comfort in a building, thus reducing demand for heating or cooling. In many developing countries, however, most occupants do not currently heat or cool, due to economic constraints, as well as climate conditions which border lines comfort conditions such as cold winter nights in Johannesburg (South Africa) or warm summer days in San Jose, Costa Rica. At the same time, as incomes rise, there is a strong tendency to introduce cooling and heating systems. If we recognize and reward passive design features that improve thermal comfort today, we diminish the risk of having to install HVAC systems in the future, or we at least ensure that such systems will be smaller and less frequently used. Or in case the heating or cooling system is not installed due to high cost, at least people should not suffer from discomfort indoors. To provide an example, in San Jose, Costa Rica, if a house were being designed with high level of glazing and small opening sizes, the internal temperature would easily rise above 30 °C (86 °F) and natural ventilation would not be enough to remove the internal heat gains and solar gains. This is why Virtual Energy for Comfort is important.

World Bank's assessment tool the EDGE software (Excellence in Design for Greater Efficiencies) illustrates the potential issues with discomfort in buildings and has created the concept of Virtual Energy for Comfort which provides for a way to present potential thermal discomfort. This approach is used to award for design solutions which improves thermal comfort even in a fully free running building. Despite the inclusion of requirements for overheating in CIBSE, overcooling has not been assessed. However, overcooling can be an issue, mainly in the developing world, for example in cities such as Lima (Peru), Bogota, and Delhi, where cooler indoor temperatures can occur frequently. This may be a new area for research and design guidance for reduction of discomfort.

Cooling Effect

[edit]

ASHRAE 55-2017 defines the Cooling Effect (CE) at elevated air speed (above 0.2 metres per second (0.66 ft/s)) as the value that, when subtracted from both the air temperature and the mean radiant temperature, yields the same SET value under still air (0.1 m/s) as in the first SET calculation under elevated air speed.[1]

The CE can be used to determine the PMV adjusted for an environment with elevated air speed using the adjusted temperature, the adjusted radiant temperature and still air (0.2 metres per second (0.66 ft/s)). Where the adjusted temperatures are equal to the original air and mean radiant temperatures minus the CE.

Local thermal discomfort

[edit]

Avoiding local thermal discomfort, whether caused by a vertical air temperature difference between the feet and the head, by an asymmetric radiant field, by local convective cooling (draft), or by contact with a hot or cold floor, is essential to providing acceptable thermal comfort. People are generally more sensitive to local discomfort when their thermal sensation is cooler than neutral, while they are less sensitive to it when their body is warmer than neutral.[33]

Radiant temperature asymmetry

[edit]

Large differences in the thermal radiation of the surfaces surrounding a person may cause local discomfort or reduce acceptance of the thermal conditions. ASHRAE Standard 55 sets limits on the allowable temperature differences between various surfaces. Because people are more sensitive to some asymmetries than others, for example that of a warm ceiling versus that of hot and cold vertical surfaces, the limits depend on which surfaces are involved. The ceiling is not allowed to be more than +5 °C (9.0 °F) warmer, whereas a wall may be up to +23 °C (41 °F) warmer than the other surfaces.[1]

Draft

[edit]

While air movement can be pleasant and provide comfort in some circumstances, it is sometimes unwanted and causes discomfort. This unwanted air movement is called "draft" and is most prevalent when the thermal sensation of the whole body is cool. People are most likely to feel a draft on uncovered body parts such as their head, neck, shoulders, ankles, feet, and legs, but the sensation also depends on the air speed, air temperature, activity, and clothing.[1]

Floor surface temperature

[edit]

Floors that are too warm or too cool may cause discomfort, depending on footwear. ASHRAE 55 recommends that floor temperatures stay in the range of 19–29 °C (66–84 °F) in spaces where occupants will be wearing lightweight shoes.[1]

Standard effective temperature

[edit]

Standard effective temperature (SET) is a model of human response to the thermal environment. Developed by A.P. Gagge and accepted by ASHRAE in 1986,[48] it is also referred to as the Pierce Two-Node model.[49] Its calculation is similar to PMV because it is a comprehensive comfort index based on heat-balance equations that incorporates the personal factors of clothing and metabolic rate. Its fundamental difference is it takes a two-node method to represent human physiology in measuring skin temperature and skin wettedness.[48]

The SET index is defined as the equivalent dry bulb temperature of an isothermal environment at 50% relative humidity in which a subject, while wearing clothing standardized for activity concerned, would have the same heat stress (skin temperature) and thermoregulatory strain (skin wettedness) as in the actual test environment.[48]

Research has tested the model against experimental data and found it tends to overestimate skin temperature and underestimate skin wettedness.[49][50] Fountain and Huizenga (1997) developed a thermal sensation prediction tool that computes SET.[51] The SET index can also be calculated using either the CBE Thermal Comfort Tool for ASHRAE 55,[9] the Python package pythermalcomfort,[10] or the R package comf.

Adaptive comfort model

[edit]
Adaptive chart according to ASHRAE Standard 55-2010

The adaptive model is based on the idea that outdoor climate might be used as a proxy of indoor comfort because of a statistically significant correlation between them. The adaptive hypothesis predicts that contextual factors, such as having access to environmental controls, and past thermal history can influence building occupants' thermal expectations and preferences.[3] Numerous researchers have conducted field studies worldwide in which they survey building occupants about their thermal comfort while taking simultaneous environmental measurements. Analyzing a database of results from 160 of these buildings revealed that occupants of naturally ventilated buildings accept and even prefer a wider range of temperatures than their counterparts in sealed, air-conditioned buildings because their preferred temperature depends on outdoor conditions.[3] These results were incorporated in the ASHRAE 55-2004 standard as the adaptive comfort model. The adaptive chart relates indoor comfort temperature to prevailing outdoor temperature and defines zones of 80% and 90% satisfaction.[1]

The ASHRAE-55 2010 Standard introduced the prevailing mean outdoor temperature as the input variable for the adaptive model. It is based on the arithmetic average of the mean daily outdoor temperatures over no fewer than 7 and no more than 30 sequential days prior to the day in question.[1] It can also be calculated by weighting the temperatures with different coefficients, assigning increasing importance to the most recent temperatures. In case this weighting is used, there is no need to respect the upper limit for the subsequent days. In order to apply the adaptive model, there should be no mechanical cooling system for the space, occupants should be engaged in sedentary activities with metabolic rates of 1–1.3 met, and a prevailing mean temperature of 10–33.5 °C (50.0–92.3 °F).[1]

This model applies especially to occupant-controlled, natural-conditioned spaces, where the outdoor climate can actually affect the indoor conditions and so the comfort zone. In fact, studies by de Dear and Brager showed that occupants in naturally ventilated buildings were tolerant of a wider range of temperatures.[3] This is due to both behavioral and physiological adjustments, since there are different types of adaptive processes.[52] ASHRAE Standard 55-2010 states that differences in recent thermal experiences, changes in clothing, availability of control options, and shifts in occupant expectations can change people's thermal responses.[1]

Adaptive models of thermal comfort are implemented in other standards, such as European EN 15251 and ISO 7730 standard. While the exact derivation methods and results are slightly different from the ASHRAE 55 adaptive standard, they are substantially the same. A larger difference is in applicability. The ASHRAE adaptive standard only applies to buildings without mechanical cooling installed, while EN15251 can be applied to mixed-mode buildings, provided the system is not running.[53]

There are basically three categories of thermal adaptation, namely: behavioral, physiological, and psychological.

Psychological adaptation

[edit]

An individual's comfort level in a given environment may change and adapt over time due to psychological factors. Subjective perception of thermal comfort may be influenced by the memory of previous experiences. Habituation takes place when repeated exposure moderates future expectations, and responses to sensory input. This is an important factor in explaining the difference between field observations and PMV predictions (based on the static model) in naturally ventilated buildings. In these buildings, the relationship with the outdoor temperatures has been twice as strong as predicted.[3]

Psychological adaptation is subtly different in the static and adaptive models. Laboratory tests of the static model can identify and quantify non-heat transfer (psychological) factors that affect reported comfort. The adaptive model is limited to reporting differences (called psychological) between modeled and reported comfort.[citation needed]

Thermal comfort as a "condition of mind" is defined in psychological terms. Among the factors that affect the condition of mind (in the laboratory) are a sense of control over the temperature, knowledge of the temperature and the appearance of the (test) environment. A thermal test chamber that appeared residential "felt" warmer than one which looked like the inside of a refrigerator.[54]

Physiological adaptation

[edit]

The body has several thermal adjustment mechanisms to survive in drastic temperature environments. In a cold environment the body utilizes vasoconstriction; which reduces blood flow to the skin, skin temperature and heat dissipation. In a warm environment, vasodilation will increase blood flow to the skin, heat transport, and skin temperature and heat dissipation.[55] If there is an imbalance despite the vasomotor adjustments listed above, in a warm environment sweat production will start and provide evaporative cooling. If this is insufficient, hyperthermia will set in, body temperature may reach 40 °C (104 °F), and heat stroke may occur. In a cold environment, shivering will start, involuntarily forcing the muscles to work and increasing the heat production by up to a factor of 10. If equilibrium is not restored, hypothermia can set in, which can be fatal.[55] Long-term adjustments to extreme temperatures, of a few days to six months, may result in cardiovascular and endocrine adjustments. A hot climate may create increased blood volume, improving the effectiveness of vasodilation, enhanced performance of the sweat mechanism, and the readjustment of thermal preferences. In cold or underheated conditions, vasoconstriction can become permanent, resulting in decreased blood volume and increased body metabolic rate.[55]

Behavioral adaptation

[edit]

In naturally ventilated buildings, occupants take numerous actions to keep themselves comfortable when the indoor conditions drift towards discomfort. Operating windows and fans, adjusting blinds/shades, changing clothing, and consuming food and drinks are some of the common adaptive strategies. Among these, adjusting windows is the most common.[56] Those occupants who take these sorts of actions tend to feel cooler at warmer temperatures than those who do not.[57]

The behavioral actions significantly influence energy simulation inputs, and researchers are developing behavior models to improve the accuracy of simulation results. For example, there are many window-opening models that have been developed to date, but there is no consensus over the factors that trigger window opening.[56]

People might adapt to seasonal heat by becoming more nocturnal, doing physical activity and even conducting business at night.

Specificity and sensitivity

[edit]

Individual differences

[edit]

The thermal sensitivity of an individual is quantified by the descriptor FS, which takes on higher values for individuals with lower tolerance to non-ideal thermal conditions.[58] This group includes pregnant women, the disabled, as well as individuals whose age is below fourteen or above sixty, which is considered the adult range. Existing literature provides consistent evidence that sensitivity to hot and cold surfaces usually declines with age. There is also some evidence of a gradual reduction in the effectiveness of the body in thermo-regulation after the age of sixty.[58] This is mainly due to a more sluggish response of the counteraction mechanisms in lower parts of the body that are used to maintain the core temperature of the body at ideal values.[58] Seniors prefer warmer temperatures than young adults (76 vs 72 degrees F or 24.4 vs 22.2 Celsius).[54]

Situational factors include the health, psychological, sociological, and vocational activities of the persons.

Biological sex differences

[edit]

While thermal comfort preferences between sexes seem to be small, there are some average differences. Studies have found males on average report discomfort due to rises in temperature much earlier than females. Males on average also estimate higher levels of their sensation of discomfort than females. One recent study tested males and females in the same cotton clothing, performing mental jobs while using a dial vote to report their thermal comfort to the changing temperature.[59] Many times, females preferred higher temperatures than males. But while females tend to be more sensitive to temperatures, males tend to be more sensitive to relative-humidity levels.[60][61]

An extensive field study was carried out in naturally ventilated residential buildings in Kota Kinabalu, Sabah, Malaysia. This investigation explored the sexes thermal sensitivity to the indoor environment in non-air-conditioned residential buildings. Multiple hierarchical regression for categorical moderator was selected for data analysis; the result showed that as a group females were slightly more sensitive than males to the indoor air temperatures, whereas, under thermal neutrality, it was found that males and females have similar thermal sensation.[62]

Regional differences

[edit]

In different areas of the world, thermal comfort needs may vary based on climate. In China[where?] the climate has hot humid summers and cold winters, causing a need for efficient thermal comfort. Energy conservation in relation to thermal comfort has become a large issue in China in the last several decades due to rapid economic and population growth.[63] Researchers are now looking into ways to heat and cool buildings in China for lower costs and also with less harm to the environment.

In tropical areas of Brazil, urbanization is creating urban heat islands (UHI). These are urban areas that have risen over the thermal comfort limits due to a large influx of people and only drop within the comfortable range during the rainy season.[64] Urban heat islands can occur over any urban city or built-up area with the correct conditions.[65][66]

In the hot, humid region of Saudi Arabia, the issue of thermal comfort has been important in mosques, because they are very large open buildings that are used only intermittently (very busy for the noon prayer on Fridays) it is hard to ventilate them properly. The large size requires a large amount of ventilation, which requires a lot of energy since the buildings are used only for short periods of time. Temperature regulation in mosques is a challenge due to the intermittent demand, leading to many mosques being either too hot or too cold. The stack effect also comes into play due to their large size and creates a large layer of hot air above the people in the mosque. New designs have placed the ventilation systems lower in the buildings to provide more temperature control at ground level.[67] New monitoring steps are also being taken to improve efficiency.[68]

Thermal stress

[edit]

The concept of thermal comfort is closely related to thermal stress. This attempts to predict the impact of solar radiation, air movement, and humidity for military personnel undergoing training exercises or athletes during competitive events. Several thermal stress indices have been proposed, such as the Predicted Heat Strain (PHS) or the humidex.[69] Generally, humans do not perform well under thermal stress. People's performances under thermal stress is about 11% lower than their performance at normal thermal wet conditions. Also, human performance in relation to thermal stress varies greatly by the type of task which the individual is completing. Some of the physiological effects of thermal heat stress include increased blood flow to the skin, sweating, and increased ventilation.[70][71]

Predicted Heat Strain (PHS)

[edit]

The PHS model, developed by the International Organization for Standardization (ISO) committee, allows the analytical evaluation of the thermal stress experienced by a working subject in a hot environment.[72] It describes a method for predicting the sweat rate and the internal core temperature that the human body will develop in response to the working conditions. The PHS is calculated as a function of several physical parameters, consequently it makes it possible to determine which parameter or group of parameters should be modified, and to what extent, in order to reduce the risk of physiological strains. The PHS model does not predict the physiological response of an individual subject, but only considers standard subjects in good health and fit for the work they perform. The PHS can be determined using either the Python package pythermalcomfort[10] or the R package comf.

American Conference on Governmental Industrial Hygienists (ACGIH) Action Limits and Threshold Limit Values

[edit]

ACGIH has established Action Limits and Threshold Limit Values for heat stress based upon the estimated metabolic rate of a worker and the environmental conditions the worker is subjected to.

This methodology has been adopted by the Occupational Safety and Health Administration (OSHA) as an effective method of assesing heat stress within workplaces.[73]

Research

[edit]

The factors affecting thermal comfort were explored experimentally in the 1970s. Many of these studies led to the development and refinement of ASHRAE Standard 55 and were performed at Kansas State University by Ole Fanger and others. Perceived comfort was found to be a complex interaction of these variables. It was found that the majority of individuals would be satisfied by an ideal set of values. As the range of values deviated progressively from the ideal, fewer and fewer people were satisfied. This observation could be expressed statistically as the percent of individuals who expressed satisfaction by comfort conditions and the predicted mean vote (PMV). This approach was challenged by the adaptive comfort model, developed from the ASHRAE 884 project, which revealed that occupants were comfortable in a broader range of temperatures.[3]

This research is applied to create Building Energy Simulation (BES) programs for residential buildings. Residential buildings in particular can vary much more in thermal comfort than public and commercial buildings. This is due to their smaller size, the variations in clothing worn, and different uses of each room. The main rooms of concern are bathrooms and bedrooms. Bathrooms need to be at a temperature comfortable for a human with or without clothing. Bedrooms are of importance because they need to accommodate different levels of clothing and also different metabolic rates of people asleep or awake.[74] Discomfort hours is a common metric used to evaluate the thermal performance of a space.

Thermal comfort research in clothing is currently being done by the military. New air-ventilated garments are being researched to improve evaporative cooling in military settings. Some models are being created and tested based on the amount of cooling they provide.[75]

In the last twenty years, researchers have also developed advanced thermal comfort models that divide the human body into many segments, and predict local thermal discomfort by considering heat balance.[76][77][78] This has opened up a new arena of thermal comfort modeling that aims at heating/cooling selected body parts.

Another area of study is the hue-heat hypothesis that states that an environment with warm colors (red, orange yellow hues) will feel warmer in terms of temperature and comfort, while an environment with cold colors (blue, green hues) will feel cooler.[79][80][81] The hue-heat hypothesis has both been investigated scientifically[82] and ingrained in popular culture in the terms warm and cold colors [83]

Medical environments

[edit]

Whenever the studies referenced tried to discuss the thermal conditions for different groups of occupants in one room, the studies ended up simply presenting comparisons of thermal comfort satisfaction based on the subjective studies. No study tried to reconcile the different thermal comfort requirements of different types of occupants who compulsorily must stay in one room. Therefore, it looks to be necessary to investigate the different thermal conditions required by different groups of occupants in hospitals to reconcile their different requirements in this concept. To reconcile the differences in the required thermal comfort conditions it is recommended to test the possibility of using different ranges of local radiant temperature in one room via a suitable mechanical system.

Although different researches are undertaken on thermal comfort for patients in hospitals, it is also necessary to study the effects of thermal comfort conditions on the quality and the quantity of healing for patients in hospitals. There are also original researches that show the link between thermal comfort for staff and their levels of productivity, but no studies have been produced individually in hospitals in this field. Therefore, research for coverage and methods individually for this subject is recommended. Also research in terms of cooling and heating delivery systems for patients with low levels of immune-system protection (such as HIV patients, burned patients, etc.) are recommended. There are important areas, which still need to be focused on including thermal comfort for staff and its relation with their productivity, using different heating systems to prevent hypothermia in the patient and to improve the thermal comfort for hospital staff simultaneously.

Finally, the interaction between people, systems and architectural design in hospitals is a field in which require further work needed to improve the knowledge of how to design buildings and systems to reconcile many conflicting factors for the people occupying these buildings.[84]

Personal comfort systems

[edit]

Personal comfort systems (PCS) refer to devices or systems which heat or cool a building occupant personally.[85] This concept is best appreciated in contrast to central HVAC systems which have uniform temperature settings for extensive areas. Personal comfort systems include fans and air diffusers of various kinds (e.g. desk fans, nozzles and slot diffusers, overhead fans, high-volume low-speed fans etc.) and personalized sources of radiant or conductive heat (footwarmers, legwarmers, hot water bottles etc.). PCS has the potential to satisfy individual comfort requirements much better than current HVAC systems, as interpersonal differences in thermal sensation due to age, sex, body mass, metabolic rate, clothing and thermal adaptation can amount to an equivalent temperature variation of 2–5 °C (3,6–9 °F), which is impossible for a central, uniform HVAC system to cater to.[85] Besides, research has shown that the perceived ability to control one's thermal environment tends to widen one's range of tolerable temperatures.[3] Traditionally, PCS devices have been used in isolation from one another. However, it has been proposed by Andersen et al. (2016) that a network of PCS devices which generate well-connected microzones of thermal comfort, and report real-time occupant information and respond to programmatic actuation requests (e.g. a party, a conference, a concert etc.) can combine with occupant-aware building applications to enable new methods of comfort maximization.[86]

See also

[edit]
  • ASHRAE
  • ANSI/ASHRAE Standard 55
  • Air conditioning
  • Building insulation
  • Cold and heat adaptations in humans
  • Heat stress
  • Mean radiant temperature
  • Mahoney tables
  • Povl Ole Fanger
  • Psychrometrics
  • Ralph G. Nevins
  • Room air distribution
  • Room temperature
  • Ventilative cooling

References

[edit]
  1. ^ a b c d e f g h i j k l m n o p q r s ANSI/ASHRAE Standard 55-2017, Thermal Environmental Conditions for Human Occupancy
  2. ^ Çengel, Yunus A.; Boles, Michael A. (2015). Thermodynamics: An Engineering Approach (8th ed.). New York, NY: McGraw-Hill Education. ISBN 978-0-07-339817-4.
  3. ^ a b c d e f g h i de Dear, Richard; Brager, Gail (1998). "Developing an adaptive model of thermal comfort and preference". ASHRAE Transactions. 104 (1): 145–67.
  4. ^ Battistel, Laura; Vilardi, Andrea; Zampini, Massimiliano; Parin, Riccardo (2023). "An investigation on humans' sensitivity to environmental temperature". Scientific Reports. 13 (1). doi:10.1038/s41598-023-47880-5. ISSN 2045-2322. PMC 10695924. PMID 38049468.
  5. ^ a b c Fanger, P Ole (1970). Thermal Comfort: Analysis and applications in environmental engineering. Danish Technical Press. ISBN 8757103410.[page needed]
  6. ^ Nicol, Fergus; Humphreys, Michael (2002). "Adaptive thermal comfort and sustainable thermal standards for buildings" (PDF). Energy and Buildings. 34 (6): 563–572. doi:10.1016/S0378-7788(02)00006-3. S2CID 17571584.[permanent dead link]
  7. ^ ISO, 2005. ISO 7730 - Ergonomics of the thermal environment — Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria.
  8. ^ CEN, 2019. EN 16798-1 - Energy performance of buildings - Ventilation for buildings. Part 1: Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics.
  9. ^ a b c Tartarini, Federico; Schiavon, Stefano; Cheung, Toby; Hoyt, Tyler (2020). "CBE Thermal Comfort Tool: Online tool for thermal comfort calculations and visualizations". SoftwareX. 12: 100563. Bibcode:2020SoftX..1200563T. doi:10.1016/j.softx.2020.100563. S2CID 225631918.
  10. ^ a b c Tartarini, Federico; Schiavon, Stefano (2020-07-01). "pythermalcomfort: A Python package for thermal comfort research". SoftwareX. 12: 100578. Bibcode:2020SoftX..1200578T. doi:10.1016/j.softx.2020.100578. ISSN 2352-7110. S2CID 225618628.
  11. ^ Axelrod, Yekaterina K.; Diringer, Michael N. (2008). "Temperature Management in Acute Neurologic Disorders". Neurologic Clinics. 26 (2): 585–603. doi:10.1016/j.ncl.2008.02.005. ISSN 0733-8619. PMID 18514828.
  12. ^ Laupland, Kevin B. (2009). "Fever in the critically ill medical patient". Critical Care Medicine. 37 (Supplement): S273–S278. doi:10.1097/ccm.0b013e3181aa6117. ISSN 0090-3493. PMID 19535958. S2CID 21002774.
  13. ^ Brown, Douglas J.A.; Brugger, Hermann; Boyd, Jeff; Paal, Peter (2012-11-15). "Accidental Hypothermia". New England Journal of Medicine. 367 (20): 1930–1938. doi:10.1056/nejmra1114208. ISSN 0028-4793. PMID 23150960. S2CID 205116341.
  14. ^ Vitruvius, Marcus (2001). The Ten Books of Architecture. Cambridge University Press. ISBN 978-1-107-71733-6.
  15. ^ Linden, David J. (1961). Touch: the science of hand, heart, and mind. New York. ISBN 9780670014873. OCLC 881888093.cite book: CS1 maint: location missing publisher (link)
  16. ^ Lisa., Heschong (1979). Thermal delight in architecture. Cambridge, Mass.: MIT Press. ISBN 978-0262081016. OCLC 5353303.
  17. ^ Wargocki, Pawel, and Olli A. Seppänen, et al. (2006) "Indoor Climate and Productivity in Offices". Vol. 6. REHVA Guidebooks 6. Brussels, Belgium: REHVA, Federation of European Heating and Air-conditioning Associations.
  18. ^ Wyon, D.P.; Andersen, I.; Lundqvist, G.R. (1981), "Effects of Moderate Heat Stress on Mental Performance", Studies in Environmental Science, vol. 5, no. 4, Elsevier, pp. 251–267, doi:10.1016/s0166-1116(08)71093-8, ISBN 9780444997616, PMID 538426
  19. ^ Fang, L; Wyon, DP; Clausen, G; Fanger, PO (2004). "Impact of indoor air temperature and humidity in an office on perceived air quality, SBS symptoms and performance". Indoor Air. 14 (Suppl 7): 74–81. doi:10.1111/j.1600-0668.2004.00276.x. PMID 15330775.
  20. ^ Cabanac, Michel (1971). "Physiological role of pleasure". Science. 173 (4002): 1103–7. Bibcode:1971Sci...173.1103C. doi:10.1126/science.173.4002.1103. PMID 5098954. S2CID 38234571.
  21. ^ Parkinson, Thomas; de Dear, Richard (2014-12-15). "Thermal pleasure in built environments: physiology of alliesthesia". Building Research & Information. 43 (3): 288–301. doi:10.1080/09613218.2015.989662. ISSN 0961-3218. S2CID 109419103.
  22. ^ Hitchings, Russell; Shu Jun Lee (2008). "Air Conditioning and the Material Culture of Routine Human Encasement". Journal of Material Culture. 13 (3): 251–265. doi:10.1177/1359183508095495. ISSN 1359-1835. S2CID 144084245.
  23. ^ Toftum, J. (2005). "Thermal Comfort Indices". Handbook of Human Factors and Ergonomics Methods. Boca Raton, FL, USA: 63.CRC Press.[page needed]
  24. ^ Smolander, J. (2002). "Effect of Cold Exposure on Older Humans". International Journal of Sports Medicine. 23 (2): 86–92. doi:10.1055/s-2002-20137. PMID 11842354. S2CID 26072420.
  25. ^ Khodakarami, J. (2009). Achieving thermal comfort. VDM Verlag. ISBN 978-3-639-18292-7.[page needed]
  26. ^ Thermal Comfort chapter, Fundamentals volume of the ASHRAE Handbook, ASHRAE, Inc., Atlanta, GA, 2005[page needed]
  27. ^ Ainsworth, BE; Haskell, WL; Whitt, MC; Irwin, ML; Swartz, AM; Strath, SJ; O'Brien, WL; Bassett Jr, DR; Schmitz, KH; Emplaincourt, PO; Jacobs Jr, DR; Leon, AS (2000). "Compendium of physical activities: An update of activity codes and MET intensities". Medicine & Science in Sports & Exercise. 32 (9 Suppl): S498–504. CiteSeerX 10.1.1.524.3133. doi:10.1097/00005768-200009001-00009. PMID 10993420.
  28. ^ a b Szokolay, Steven V. (2010). Introduction to Architectural Science: The Basis of Sustainable Design (2nd ed.). pp. 16–22.
  29. ^ Havenith, G (1999). "Heat balance when wearing protective clothing". The Annals of Occupational Hygiene. 43 (5): 289–96. CiteSeerX 10.1.1.566.3967. doi:10.1016/S0003-4878(99)00051-4. PMID 10481628.
  30. ^ McCullough, Elizabeth A.; Eckels, Steve; Harms, Craig (2009). "Determining temperature ratings for children's cold weather clothing". Applied Ergonomics. 40 (5): 870–7. doi:10.1016/j.apergo.2008.12.004. PMID 19272588.
  31. ^ Frank C. Mooren, ed. (2012). "Skin Wettedness". Encyclopedia of Exercise Medicine in Health and Disease. p. 790. doi:10.1007/978-3-540-29807-6_3041. ISBN 978-3-540-36065-0.
  32. ^ Fukazawa, Takako; Havenith, George (2009). "Differences in comfort perception in relation to local and whole-body skin wetness". European Journal of Applied Physiology. 106 (1): 15–24. doi:10.1007/s00421-009-0983-z. PMID 19159949. S2CID 9932558.
  33. ^ a b ANSI, ASHRAE, 2020. Standard - 55 Thermal environmental conditions for human occupancy.
  34. ^ Balaras, Constantinos A.; Dascalaki, Elena; Gaglia, Athina (2007). "HVAC and indoor thermal conditions in hospital operating rooms". Energy and Buildings. 39 (4): 454. doi:10.1016/j.enbuild.2006.09.004.
  35. ^ Wolkoff, Peder; Kjaergaard, Søren K. (2007). "The dichotomy of relative humidity on indoor air quality". Environment International. 33 (6): 850–7. doi:10.1016/j.envint.2007.04.004. PMID 17499853.
  36. ^ Hashiguchi, Nobuko; Tochihara, Yutaka (2009). "Effects of low humidity and high air velocity in a heated room on physiological responses and thermal comfort after bathing: An experimental study". International Journal of Nursing Studies. 46 (2): 172–80. doi:10.1016/j.ijnurstu.2008.09.014. PMID 19004439.
  37. ^ McMullan, Randall (2012). Environmental Science in Building. Macmillan International Higher Education. p. 25. ISBN 9780230390355.[permanent dead link]
  38. ^ "Humidity". Humidity. The Columbia Electronic Encyclopedia (6th ed.). Columbia University Press. 2012.
  39. ^ "How the weather makes you hot and cold". Popular Mechanics. Hearst Magazines. July 1935. p. 36.
  40. ^ Morris, Nathan B.; English, Timothy; Hospers, Lily; Capon, Anthony; Jay, Ollie (2019-08-06). "The Effects of Electric Fan Use Under Differing Resting Heat Index Conditions: A Clinical Trial". Annals of Internal Medicine. 171 (9). American College of Physicians: 675–677. doi:10.7326/m19-0512. ISSN 0003-4819. PMID 31382270. S2CID 199447588.
  41. ^ "Radiation and Thermal Comfort for Indoor Spaces | SimScale Blog". SimScale. 2019-06-27. Retrieved 2019-10-14.
  42. ^ Humphreys, Michael A.; Nicol, J. Fergus; Raja, Iftikhar A. (2007). "Field Studies of Indoor Thermal Comfort and the Progress of the Adaptive Approach". Advances in Building Energy Research. 1 (1): 55–88. doi:10.1080/17512549.2007.9687269. ISSN 1751-2549. S2CID 109030483.
  43. ^ Brager, Gail S.; de Dear, Richard J. (1998). "Thermal adaptation in the built environment: a literature review". Energy and Buildings. 27 (1): 83–96. doi:10.1016/S0378-7788(97)00053-4. ISSN 0378-7788. S2CID 114893272.
  44. ^ Hoyt, Tyler; Schiavon, Stefano; Piccioli, Alberto; Moon, Dustin; Steinfeld, Kyle (2013). "CBE Thermal Comfort Tool". Center for the Built Environment, University of California, Berkeley. Retrieved 21 November 2013.
  45. ^ a b Cheung, Toby; Schiavon, Stefano; Parkinson, Thomas; Li, Peixian; Brager, Gail (2019-04-15). "Analysis of the accuracy on PMV – PPD model using the ASHRAE Global Thermal Comfort Database II". Building and Environment. 153: 205–217. doi:10.1016/j.buildenv.2019.01.055. ISSN 0360-1323. S2CID 115526743.
  46. ^ Földváry Ličina, Veronika; Cheung, Toby; Zhang, Hui; de Dear, Richard; Parkinson, Thomas; Arens, Edward; Chun, Chungyoon; Schiavon, Stefano; Luo, Maohui (2018-09-01). "Development of the ASHRAE Global Thermal Comfort Database II". Building and Environment. 142: 502–512. doi:10.1016/j.buildenv.2018.06.022. hdl:11311/1063927. ISSN 0360-1323. S2CID 115289014.
  47. ^ WC16 Saberi (PDF). p. 1329 (p. 5 in the PDF). Archived from the original (PDF) on 23 June 2016. Retrieved 31 May 2017.
  48. ^ a b c Gagge, AP; Fobelets, AP; Berglund, LG (1986). "A standard predictive index of human response to the thermal environment". ASHRAE Transactions. 92 (2nd ed.): 709–31.
  49. ^ a b Doherty, TJ; Arens, E.A. (1988). "Evaluation of the physiological bases of thermal comfort models". ASHRAE Transactions. 94 (1): 15.
  50. ^ Berglund, Larry (1978). "Mathematical models for predicting the thermal comfort response of building occupants". ASHRAE Transactions. 84.
  51. ^ Fountain, Mark; Huizenga, Charlie (1997). "A thermal sensation prediction software tool for use by the profession". ASHRAE Transactions. 103 (2).
  52. ^ La Roche, P. (2011). Carbon-neutral architectural design. CRC Press.[page needed]
  53. ^ EN 15251 Standard 2007, Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics
  54. ^ a b Rohles, Frederick H. (February 2007). "Temperature & Temperament - A Psychologist Looks at Comfort". ASHRAE Journal: 14–22.
  55. ^ a b c Szokolay, Steven V. (2010). Introduction to Architectural Science: The Basis of Sustainable Design (2nd ed.). p. 19.
  56. ^ a b Nicol, J Fergus (2001). "Characterising Occupant Behaviour in Buildings" (PDF). Proceedings of the Seventh International IBPSA Conference. Rio de Janeiro, Brazil. pp. 1073–1078.
  57. ^ Haldi, Frédéric; Robinson, Darren (2008). "On the behaviour and adaptation of office occupants". Building and Environment. 43 (12): 2163. doi:10.1016/j.buildenv.2008.01.003.
  58. ^ a b c Lenzuni, P.; Freda, D.; Del Gaudio, M. (2009). "Classification of Thermal Environments for Comfort Assessment". Annals of Occupational Hygiene. 53 (4): 325–32. doi:10.1093/annhyg/mep012. PMID 19299555.
  59. ^ Wyon, D.P.; Andersen, I.; Lundqvist, G.R. (2009). "Spontaneous magnitude estimation of thermal discomfort during changes in the ambient temperature*". Journal of Hygiene. 70 (2): 203–21. doi:10.1017/S0022172400022269. PMC 2130040. PMID 4503865.
  60. ^ Karjalainen, Sami (2007). "Biological sex differences in thermal comfort and use of thermostats in everyday thermal environments". Building and Environment. 42 (4): 1594–1603. doi:10.1016/j.buildenv.2006.01.009.
  61. ^ Lan, Li; Lian, Zhiwei; Liu, Weiwei; Liu, Yuanmou (2007). "Investigation of biological sex difference in thermal comfort for Chinese people". European Journal of Applied Physiology. 102 (4): 471–80. doi:10.1007/s00421-007-0609-2. PMID 17994246. S2CID 26541128.
  62. ^ Harimi Djamila; Chi Chu Ming; Sivakumar Kumaresan (6–7 November 2012), "Assessment of Gender Differences in Their Thermal Sensations to the Indoor Thermal Environment", Engineering Goes Green, 7th CUTSE Conference, Sarawak Malaysia: School of Engineering & Science, Curtin University, pp. 262–266, ISBN 978-983-44482-3-3.
  63. ^ Yu, Jinghua; Yang, Changzhi; Tian, Liwei; Liao, Dan (2009). "Evaluation on energy and thermal performance for residential envelopes in hot summer and cold winter zone of China". Applied Energy. 86 (10): 1970. doi:10.1016/j.apenergy.2009.01.012.
  64. ^ Silva, Vicente de Paulo Rodrigues; De Azevedo, Pedro Vieira; Brito, Robson Souto; Campos, João Hugo Baracuy (2009). "Evaluating the urban climate of a typically tropical city of northeastern Brazil". Environmental Monitoring and Assessment. 161 (1–4): 45–59. doi:10.1007/s10661-008-0726-3. PMID 19184489. S2CID 23126235..
  65. ^ United States Environmental Protection Agency. Office of Air and Radiation. Office of the Administrator.; Smart Growth Network (2003). Smart Growth and Urban Heat Islands. (EPA-content)
  66. ^ Shmaefsky, Brian R. (2006). "One Hot Demonstration: The Urban Heat Island Effect" (PDF). Journal of College Science Teaching. 35 (7): 52–54. Archived (PDF) from the original on 2022-03-16.
  67. ^ Al-Homoud, Mohammad S.; Abdou, Adel A.; Budaiwi, Ismail M. (2009). "Assessment of monitored energy use and thermal comfort conditions in mosques in hot-humid climates". Energy and Buildings. 41 (6): 607. doi:10.1016/j.enbuild.2008.12.005.
  68. ^ Nasrollahi, N. (2009). Thermal environments and occupant thermal comfort. VDM Verlag, 2009, ISBN 978-3-639-16978-2.[page needed]
  69. ^ "About the WBGT and Apparent Temperature Indices".
  70. ^ Hancock, P. A.; Ross, Jennifer M.; Szalma, James L. (2007). "A Meta-Analysis of Performance Response Under Thermal Stressors". Human Factors: The Journal of the Human Factors and Ergonomics Society. 49 (5): 851–77. doi:10.1518/001872007X230226. PMID 17915603. S2CID 17379285.
  71. ^ Leon, Lisa R. (2008). "Thermoregulatory responses to environmental toxicants: The interaction of thermal stress and toxicant exposure". Toxicology and Applied Pharmacology. 233 (1): 146–61. doi:10.1016/j.taap.2008.01.012. PMID 18313713.
  72. ^ ISO, 2004. ISO 7933 - Ergonomics of the thermal environment — Analytical determination and interpretation of heat stress using calculation of the predicted heat strain.
  73. ^ "OSHA Technical Manual (OTM) Section III: Chapter 4". osha.gov. September 15, 2017. Retrieved January 11, 2024.
  74. ^ Peeters, Leen; Dear, Richard de; Hensen, Jan; d’Haeseleer, William (2009). "Thermal comfort in residential buildings: Comfort values and scales for building energy simulation". Applied Energy. 86 (5): 772. doi:10.1016/j.apenergy.2008.07.011.
  75. ^ Barwood, Martin J.; Newton, Phillip S.; Tipton, Michael J. (2009). "Ventilated Vest and Tolerance for Intermittent Exercise in Hot, Dry Conditions with Military Clothing". Aviation, Space, and Environmental Medicine. 80 (4): 353–9. doi:10.3357/ASEM.2411.2009. PMID 19378904.
  76. ^ Zhang, Hui; Arens, Edward; Huizenga, Charlie; Han, Taeyoung (2010). "Thermal sensation and comfort models for non-uniform and transient environments: Part I: Local sensation of individual body parts". Building and Environment. 45 (2): 380. doi:10.1016/j.buildenv.2009.06.018. S2CID 220973362.
  77. ^ Zhang, Hui; Arens, Edward; Huizenga, Charlie; Han, Taeyoung (2010). "Thermal sensation and comfort models for non-uniform and transient environments, part II: Local comfort of individual body parts". Building and Environment. 45 (2): 389. doi:10.1016/j.buildenv.2009.06.015.
  78. ^ Zhang, Hui; Arens, Edward; Huizenga, Charlie; Han, Taeyoung (2010). "Thermal sensation and comfort models for non-uniform and transient environments, part III: Whole-body sensation and comfort". Building and Environment. 45 (2): 399. doi:10.1016/j.buildenv.2009.06.020.
  79. ^ Tsushima, Yoshiaki; Okada, Sho; Kawai, Yuka; Sumita, Akio; Ando, Hiroshi; Miki, Mitsunori (10 August 2020). "Effect of illumination on perceived temperature". PLOS ONE. 15 (8): e0236321. Bibcode:2020PLoSO..1536321T. doi:10.1371/journal.pone.0236321. PMC 7416916. PMID 32776987.
  80. ^ Ziat, Mounia; Balcer, Carrie Anne; Shirtz, Andrew; Rolison, Taylor (2016). "A Century Later, the Hue-Heat Hypothesis: Does Color Truly Affect Temperature Perception?". Haptics: Perception, Devices, Control, and Applications. Lecture Notes in Computer Science. Vol. 9774. pp. 273–280. doi:10.1007/978-3-319-42321-0_25. ISBN 978-3-319-42320-3.
  81. ^ "Hue Heat". Medium. 10 April 2022. Retrieved 15 May 2023.
  82. ^ Toftum, Jørn; Thorseth, Anders; Markvart, Jakob; Logadóttir, Ásta (October 2018). "Occupant response to different correlated colour temperatures of white LED lighting" (PDF). Building and Environment. 143: 258–268. doi:10.1016/j.buildenv.2018.07.013. S2CID 115803800.
  83. ^ "Temperature - Colour - National 5 Art and Design Revision". BBC Bitesize. Retrieved 15 May 2023.
  84. ^ Khodakarami, Jamal; Nasrollahi, Nazanin (2012). "Thermal comfort in hospitals – A literature review". Renewable and Sustainable Energy Reviews. 16 (6): 4071. doi:10.1016/j.rser.2012.03.054.
  85. ^ a b Zhang, H.; Arens, E.; Zhai, Y. (2015). "A review of the corrective power of personal comfort systems in non-neutral ambient environments". Building and Environment. 91: 15–41. doi:10.1016/j.buildenv.2015.03.013.
  86. ^ Andersen, M.; Fiero, G.; Kumar, S. (21–26 August 2016). "Well-Connected Microzones for Increased Building Efficiency and Occupant Comfort". Proceedings of ACEEE Summer Study on Energy Efficiency in Buildings.

Further reading

[edit]
  • Thermal Comfort, Fanger, P. O, Danish Technical Press, 1970 (Republished by McGraw-Hill, New York, 1973).
  • Thermal Comfort chapter, Fundamentals volume of the ASHRAE Handbook, ASHRAE, Inc., Atlanta, GA, 2005.
  • Weiss, Hal (1998). Secrets of Warmth: For Comfort or Survival. Seattle, WA: Mountaineers Books. ISBN 978-0-89886-643-8. OCLC 40999076.
  • Godish, T. Indoor Environmental Quality. Boca Raton: CRC Press, 2001.
  • Bessoudo, M. Building Facades and Thermal Comfort: The impacts of climate, solar shading, and glazing on the indoor thermal environment. VDM Verlag, 2008
  • Nicol, Fergus (2012). Adaptive thermal comfort : principles and practice. London New York: Routledge. ISBN 978-0415691598.
  • Humphreys, Michael (2016). Adaptive thermal comfort : foundations and analysis. Abingdon, U.K. New York, NY: Routledge. ISBN 978-0415691611.
  • Communications in development and assembly of textile products, Open Access Journal, ISSN 2701-939X
  • Heat Stress, National Institute for Occupational Safety and Health.
  • Cold Stress, National Institute for Occupational Safety and Health.

 

Mobile homes with detached single car garages

A mobile home (also known as a house trailer, park home, trailer, or trailer home) is a prefabricated structure, built in a factory on a permanently attached chassis before being transported to site (either by being towed or on a trailer). Used as permanent homes, or for holiday or temporary accommodation, they are often left permanently or semi-permanently in one place, but can be moved, and may be required to move from time to time for legal reasons.

Mobile homes share the same historic origins as travel trailers, but today the two are very different, with travel trailers being used primarily as temporary or vacation homes. Behind the cosmetic work fitted at installation to hide the base, mobile homes have strong trailer frames, axles, wheels, and tow-hitches.

History

[edit]

In the United States, this form of housing goes back to the early years of cars and motorized highway travel.[1] It was derived from the travel trailer (often referred to during the early years as "house trailers" or "trailer coaches"), a small unit with wheels attached permanently, often used for camping or extended travel. The original rationale for this type of housing was its mobility. Units were initially marketed primarily to people whose lifestyle required mobility. However, in the 1950s, the homes began to be marketed primarily as an inexpensive form of housing designed to be set up and left in a location for long periods of time or even permanently installed with a masonry foundation. Previously, units had been eight feet or fewer in width, but in 1956, the 10-foot (3.0 m) wide home ("ten-wide") was introduced, along with the new term "mobile home".[2]

The homes were given a rectangular shape, made from pre-painted aluminum panels, rather than the streamlined shape of travel trailers, which were usually painted after assembly. All of this helped increase the difference between these homes and home/travel trailers. The smaller, "eight-wide" units could be moved simply with a car, but the larger, wider units ("ten-wide", and, later, "twelve-wide") usually required the services of a professional trucking company, and, often, a special moving permit from a state highway department. During the late 1960s and early 1970s, the homes were made even longer and wider, making the mobility of the units more difficult. Nowadays, when a factory-built home is moved to a location, it is usually kept there permanently and the mobility of the units has considerably decreased. In some states, mobile homes have been taxed as personal property if the wheels remain attached, but as real estate if the wheels are removed. Removal of the tongue and axles may also be a requirement for real estate classification.

Manufactured home

[edit]
Example of a modern manufactured home in New Alexandria, Pennsylvania. 28 by 60 feet (8.5 m × 18.3 m)
Manufactured home foundation

Mobile homes built in the United States since June 1976, legally referred to as manufactured homes, are required to meet FHA certification requirements and come with attached metal certification tags. Mobile homes permanently installed on owned land are rarely mortgageable, whereas FHA code manufactured homes are mortgageable through VA, FHA, and Fannie Mae.

Many people who could not afford a traditional site-built home, or did not desire to commit to spending a large sum of money on housing, began to see factory-built homes as a viable alternative for long-term housing needs. The units were often marketed as an alternative to apartment rental. However, the tendency of the units of this era to depreciate rapidly in resale value[citation needed] made using them as collateral for loans much riskier than traditional home loans. Terms were usually limited to less than the thirty-year term typical of the general home-loan market, and interest rates were considerably higher.[citation needed] In that way, mobile home loans resembled motor vehicle loans more than traditional home mortgage loans.

Construction and sizes

[edit]
Exterior wall assemblies being set in place during manufacture

Mobile homes come in two major sizes, single-wides and double-wides. Single-wides are 18 feet (5.5 m) or less in width and 90 feet (27 m) or less in length and can be towed to their site as a single unit. Double-wides are 20 feet (6.1 m) or more wide and are 90 feet (27 m) in length or less and are towed to their site in two separate units, which are then joined. Triple-wides and even homes with four, five, or more units are also built but less frequently.

While site-built homes are rarely moved, single-wide owners often "trade" or sell their home to a dealer in the form of the reduction of the purchase of a new home. These "used" homes are either re-sold to new owners or to park owners who use them as inexpensive rental units. Single-wides are more likely to be traded than double-wides because removing them from the site is easier. In fact, only about 5% of all double-wides will ever be moved.[citation needed]

While an EF1 tornado might cause minor damage to a site-built home, it could do significant damage to a factory-built home, especially an older model or one that is not properly secured. Also, structural components (such as windows) are typically weaker than those in site-built homes.[3] 70 miles per hour (110 km/h) winds can destroy a mobile home in a matter of minutes. Many brands offer optional hurricane straps, which can be used to tie the home to anchors embedded in the ground.

Regulations

[edit]

United States

[edit]
Home struck by tornado

In the United States, mobile homes are regulated by the US Department of Housing and Urban Development (HUD), via the Federal National Manufactured Housing Construction and Safety Standards Act of 1974. This national regulation has allowed many manufacturers to distribute nationwide because they are immune to the jurisdiction of local building authorities.[4] [5]: 1  By contrast, producers of modular homes must abide by state and local building codes. There are, however, wind zones adopted by HUD that home builders must follow. For example, statewide, Florida is at least wind zone 2. South Florida is wind zone 3, the strongest wind zone. After Hurricane Andrew in 1992, new standards were adopted for home construction. The codes for building within these wind zones were significantly amended, which has greatly increased their durability. During the 2004 hurricanes in Florida, these standards were put to the test, with great success. Yet, older models continue to face the exposed risk to high winds because of the attachments applied such as carports, porch and screen room additions. Such areas are exposed to "wind capture" which apply extreme force to the underside of the integrated roof panel systems, ripping the fasteners through the roof pan causing a series of events which destroys the main roof system and the home.

The popularity of the factory-built homes caused complications the legal system was not prepared to handle. Originally, factory-built homes tended to be taxed as vehicles rather than real estate, which resulted in very low property tax rates for their inhabitants. That caused local governments to reclassify them for taxation purposes.

However, even with that change, rapid depreciation often resulted in the home occupants paying far less in property taxes than had been anticipated and budgeted. The ability to move many factory-built homes rapidly into a relatively small area resulted in strains to the infrastructure and governmental services of the affected areas, such as inadequate water pressure and sewage disposal, and highway congestion. That led jurisdictions to begin placing limitations on the size and density of developments.

Early homes, even those that were well-maintained, tended to depreciate over time, much like motor vehicles. That is in contrast to site-built homes which include the land they are built on and tend to appreciate in value. The arrival of mobile homes in an area tended to be regarded with alarm, in part because of the devaluation of the housing potentially spreading to preexisting structures.

This combination of factors has caused most jurisdictions to place zoning regulations on the areas in which factory-built homes are placed, and limitations on the number and density of homes permitted on any given site. Other restrictions, such as minimum size requirements, limitations on exterior colors and finishes, and foundation mandates have also been enacted. There are many jurisdictions that will not allow the placement of any additional factory-built homes. Others have strongly limited or forbidden all single-wide models, which tend to depreciate more rapidly than modern double-wide models.

Apart from all the practical issues described above, there is also the constant discussion about legal fixture and chattels and so the legal status of a trailer is or could be affected by its incorporation to the land or not. This sometimes involves such factors as whether or not the wheels have been removed.

North Carolina

[edit]

The North Carolina Board of Transportation allowed 14-foot-wide homes on the state's roads, but until January 1997, 16-foot-wide homes were not allowed. 41 states allowed 16-foot-wide homes, but they were not sold in North Carolina. Under a trial program approved January 10, 1997, the wider homes could be delivered on specific roads at certain times of day and travel 10 mph below the speed limit, with escort vehicles in front and behind.[6][7] Eventually, all homes had to leave the state on interstate highways.[8]

In December 1997, a study showed that the wider homes could be delivered safely, but some opponents still wanted the program to end.[9] On December 2, 1999, the NC Manufactured Housing Institute asked the state Board of Transportation to expand the program to allow deliveries of 16-foot-wide homes within North Carolina.[8] A month later, the board extended the pilot program by three months but did not vote to allow shipments within the state.[10] In June 2000, the board voted to allow 16-foot-side homes to be shipped to other states on more two-lane roads, and to allow shipments in the state east of US 220. A third escort was required, including a law enforcement officer on two-lane roads.[11]

New York

[edit]

In New York State, the Homes and Community Renewal agency tracks mobile home parks and provides regulations concerning them. For example, the agency requires park owners to provide residents with a $15,000 grant if residents are forced to move when the land is transferred to a new owner. Residents are also granted the right of first refusal for a sale of the park, however, if the owner does not evict tenants for five years, the land sale can go ahead. State law also restricts the annual increase in land lot fee to a cap of 3 percent, unless the landowner demonstrates hardship in a local court, and can then raise the land lot fee by up to 6 percent in a year.[12]

Mobile home parks

[edit]
Meadow Lanes Estates Mobile Home Park, Ames, Iowa, August 2010, during a flood

Mobile homes are often sited in land lease communities known as trailer parks (also 'trailer courts', 'mobile home parks', 'mobile home communities', 'manufactured home communities', 'factory-built home communities' etc.); these communities allow homeowners to rent space on which to place a home. In addition to providing space, the site often provides basic utilities such as water, sewer, electricity, or natural gas and other amenities such as mowing, garbage removal, community rooms, pools, and playgrounds.

There are over 38,000[13] trailer parks in the United States ranging in size from 5 to over 1,000 home sites. Although most parks appeal to meeting basic housing needs, some communities specialize towards certain segments of the market. One subset of mobile home parks, retirement communities, restrict residents to those age 55 and older. Another subset of mobile home parks, seasonal communities, are located in popular vacation destinations or are used as a location for summer homes. In New York State, as of 2019, there were 1,811 parks with 83,929 homes.[12]

Newer homes, particularly double-wides, tend to be built to much higher standards than their predecessors and meet the building codes applicable to most areas. That has led to a reduction in the rate of value depreciation of most used units.[14]

Additionally, modern homes tend to be built from materials similar to those used in site-built homes rather than inferior, lighter-weight materials. They are also more likely to physically resemble site-built homes. Often, the primary differentiation in appearance is that factory-built homes tend to have less of a roof slope so that they can be readily transported underneath bridges and overpasses.[citation needed]

The number of double-wide units sold exceeds the number of single-wides, which is due in part to the aforementioned zoning restrictions. Another reason for higher sales is the spaciousness of double-wide units, which are now comparable to site-built homes. Single-wide units are still popular primarily in rural areas, where there are fewer restrictions. They are frequently used as temporary housing in areas affected by natural disasters when restrictions are temporarily waived.[citation needed]

Another recent trend has been parks in which the owner of the mobile home owns the lot on which their unit is parked. Some of these communities simply provide land in a homogeneous neighborhood, but others are operated more like condominiums with club homes complete with swimming pools and meeting rooms which are shared by all of the residents, who are required to pay membership fees and dues.

By country

[edit]

Mobile home (or mobile-homes) are used in many European campgrounds to refer to fixed caravans, purpose-built cabins, and even large tents, which are rented by the week or even year-round as cheap accommodation, similar to the US concept of a trailer park. Like many other US loanwords, the term is not used widely in Britain.[citation needed]

United Kingdom

[edit]
A mobile home marketed as a holiday home

Mobile Homes or Static Caravans are popular across the United Kingdom. They are more commonly referred to as Park Homes or Leisure Lodges, depending on if they are marketed as a residential dwelling or as a second holiday home residence.

Residential Mobile homes (park homes) are built to the BS3632 standard. This standard is issued by the British Standards Institute. The institute is a UK body who produce a range of standards for businesses and products to ensure they are fit for purpose. The majority of residential parks in the UK have a minimum age limit for their residents, and are generally marketed as retirement or semi-retirement parks. Holiday Homes, static caravans or holiday lodges aren't required to be built to BS3632 standards, but many are built to the standard.

A static caravan park on the cliffs above Beer, Devon, England

In addition to mobile homes, static caravans are popular across the UK. Static caravans have wheels and a rudimentary chassis with no suspension or brakes and are therefore transported on the back of large flatbed lorries, the axle and wheels being used for movement to the final location when the static caravan is moved by tractor or 4×4. A static caravan normally stays on a single plot for many years and has many of the modern conveniences normally found in a home.

Mobile homes are designed and constructed to be transportable by road in one or two sections. Mobile homes are no larger than 20 m × 6.8 m (65 ft 7 in × 22 ft 4 in) with an internal maximum height of 3.05 m (10 ft 0 in). Legally, mobile homes can still be defined as "caravans".

Static holiday caravans generally have sleeping accommodation for 6 to 10 people in 2, 3 or 4 bedrooms and on convertible seating in the lounge referred to as a 'pull out bed'. They tend towards a fairly "open-plan" layout, and while some units are double glazed and centrally heated for year-round use, cheaper models without double glazing or central heating are available for mainly summer use. Static caravan holiday homes are intended for leisure use and are available in 10 and 12 ft (3.0 and 3.7 m) widths, a small number in 13 and 14 ft (4.0 and 4.3 m) widths, and a few 16 ft (4.9 m) wide, consisting of two 8 ft (2.4 m) wide units joined. Generally, holiday homes are clad in painted steel panels, but can be clad in PVC, timber or composite materials. Static caravans are sited on caravan parks where the park operator of the site leases a plot to the caravan owner. There are many holiday parks in the UK in which one's own static caravan can be owned. There are a few of these parks in areas that are prone to flooding and anyone considering buying a sited static caravan needs to take particular care in checking that their site is not liable to flooding.

Static caravans can be rented on an ad-hoc basis or purchased. Purchase prices range from £25,000 to £100,000. Once purchased, static caravans have various ongoing costs including insurance, site fees, local authority rates, utility charges, winterisation and depreciation. Depending on the type of caravan and the park these costs can range from £1,000 to £40,000 per year.[15] Some park owners used to have unfair conditions in their lease contracts but the Office of Fair Trading has produced a guidance document available for download called Unfair Terms in Holiday Caravan Agreements which aims to stop unfair practices.

Israel

[edit]
Posting of caravan in Mitzpe Hila, Israel, 1982

Many Israeli settlements and outposts are originally composed of caravans (Hebrew: קראוואן caravan; pl. קראוואנים, caravanim). They are constructed of light metal, are not insulated but can be outfitted with heating and air-conditioning units, water lines, recessed lighting, and floor tiling to function in a full-service capacity. Starting in 2005, prefabricated homes, named caravillas (Hebrew: קרווילה), a portmanteau of the words caravan, and villa, begin to replace mobile homes in many Israeli settlements.

Difference from modular homes

[edit]

Because of similarities in the manufacturing process, some companies build both types in their factories. Modular homes are transported on flatbed trucks rather than being towed, and lack axles and an automotive-type frame. However, some modular homes are towed behind a semi-truck or toter on a frame similar to that of a trailer. The home is usually in two pieces and is hauled by two separate trucks. Each frame has five or more axles, depending on the size of the home. Once the home has reached its location, the axles and the tongue of the frame are then removed, and the home is set on a concrete foundation by a large crane.

Both styles are commonly referred to as factory-built housing, but that term's technical use is restricted to a class of homes regulated by the Federal National Mfd. Housing Construction and Safety Standards Act of 1974.

Most zoning restrictions on the homes have been found to be inapplicable or only applicable to modular homes. That occurs often after considerable litigation on the topic by affected jurisdictions and by plaintiffs failing to ascertain the difference. Most modern modulars, once fully assembled, are indistinguishable from site-built homes. Their roofs are usually transported as separate units. Newer modulars also come with roofs that can be raised during the setting process with cranes. There are also modulars with 2 to 4 storeys.

[edit]

See also

[edit]
  • All Parks Alliance for Change
  • Campervan
  • Construction trailer
  • Houseboat
  • Manufactured housing
  • Modular home
  • Motorhome
  • Nomadic wagons
  • Recreational vehicle
  • Reefer container housing units
  • Small house movement
  • Trailer (vehicle)
  • Trailer Park Boys
  • Trailer trash
  • Vardo
  • Prefabricated home

References

[edit]
  1. ^ "Part 17, Mobile Home Parks". ny.gov.
  2. ^ "Mobile Manufactured Homes". ct.gov. Retrieved 28 March 2018.
  3. ^ "Caravan Repairs? Great Caravan Repair Deals!". canterburycaravans.com.au.
  4. ^ "Titles for Mobile Homes". AAA Digest of Motor Laws.
  5. ^ Andrews, Jeff (January 29, 2018). "HUD to explore deregulating manufactured housing". Curbed. Archived from the original on 2018-01-29. Retrieved 2019-04-19.
  6. ^ Hackett, Thomas (January 11, 1997). "Extra-wide homes to take to the road". News & Observer. p. A3.
  7. ^ Mitchell, Kirsten B. (January 10, 1997). "Wider trailer transport OK'd". Star-News. p. 1A.
  8. ^ a b Whitacre, Dianne (December 2, 1999). "Mobile-Home Makers Look to Squeeze on N.C. Roads". The Charlotte Observer. p. 1C.
  9. ^ "Study: Keep Curbs on Transporting Wide Mobile Homes". The Charlotte Observer. December 1, 1997. p. 4C.
  10. ^ Bonner, Lynn (January 7, 2000). "Program for wide mobile homes extended". News & Observer. p. A3.
  11. ^ "Wide mobile homes given final approval". News & Observer. June 3, 2000. p. A3.
  12. ^ a b Liberatore, Wendy (January 23, 2022). "Saratoga County's mobile home parks - a sign of an affordable housing crisis". www.timesunion.com. Retrieved January 23, 2022.
  13. ^ "Database of Mobile Home Parks in the United States". Retrieved 2009-02-17.
  14. ^ "Homes". Answers.com. Retrieved 2006-09-12.
  15. ^ "Cost of a static caravan or lodge". StaticCaravanExpert. 28 December 2020. Retrieved 2021-03-07.

Further reading

[edit]
  • Benson, J. E. (1990). Good neighbors: Ethnic relations in Garden City trailer courts. Urban Anthropology,19, 361–386.
  • Burch-Brown, C. (1996). Trailers. Charlottesville: University Press of Virginia. Text by David Rigsbee.
  • Geisler, C. C., & Mitsuda, H. (1987). Mobile-home growth, regulation, and discrimination in upstate New York. Rural Sociology, 52, 532–543.
  • Hart, J. F., Rhodes, M. J., & Morgan, J. T. (2002). The unknown world of the mobile home. Baltimore: Johns Hopkins University Press.
  • MacTavish, K. A., & Salamon, S. (2001). Mobile home park on the prairie: A new rural community form. Rural Sociology, 66, 487–506.
  • Moore, B. (2006). Trailer trash: The world of trailers and mobile homes in the Southwest. Laughlin: Route 66 Magazine.
  • Thornburg, D. A. (1991). Galloping bungalows: The rise and demise of the American house trailer. Hamden: Archon Books.
  • Wallis, A. D. (1991). Wheel estate: The rise and decline of mobile homes. New York: Oxford University Press.
[edit]
  • Regulating body in the UK
  • US Federal Manufactured Home Construction and Safety Standards

 

Driving Directions in Arapahoe County


Driving Directions From Littleton to Royal Supply South
Driving Directions From VRCC Veterinary Specialty and Emergency Hospital to Royal Supply South
Driving Directions From King Soopers to Royal Supply South
Driving Directions From U.S. Bank ATM to Royal Supply South
Driving Directions From Regal River Point to Royal Supply South
Driving Directions From Mullen High School to Royal Supply South
Driving Directions From Colorado Freedom Memorial to Royal Supply South
Driving Directions From The Aurora Highlands North Sculpture to Royal Supply South
Driving Directions From Cherry Creek Valley Ecological Park to Royal Supply South
Driving Directions From The Aurora Highlands North Sculpture to Royal Supply South
Driving Directions From Aurora History Museum to Royal Supply South
Driving Directions From Cherry Creek State Park to Royal Supply South

Reviews for Royal Supply South


View GBP

Frequently Asked Questions

To determine the optimal vent placement, conduct an airflow analysis by evaluating the layout of the mobile home, identifying areas prone to temperature fluctuations, and using tools like smoke pencils or laser anemometers. Its also beneficial to consult with HVAC professionals who can provide insights based on experience and potentially use software modeling for more precise recommendations.
Duct size and layout are crucial as they affect airflow efficiency and pressure balance throughout the system. Properly sized ducts reduce resistance, ensuring adequate airflow reaches each vent. A well-designed duct layout minimizes bends and restrictions that can lead to uneven distribution. Consulting with an HVAC professional is recommended to assess existing ductwork or design new systems effectively.
Yes, adjustable or directional vents can help direct airflow where its needed most, compensating for unique room layouts found in mobile homes. High-velocity systems might also be considered as they offer improved mixing of air within smaller spaces. Evaluating your specific needs with an HVAC specialist will guide you towards choosing suitable vent types for your situation.